Automated Techniques on Indian Legal documents: A Review

Nineesha P, P. Deepalakshmi
{"title":"Automated Techniques on Indian Legal documents: A Review","authors":"Nineesha P, P. Deepalakshmi","doi":"10.1109/ICICICT54557.2022.9918013","DOIUrl":null,"url":null,"abstract":"The usage of legal documents has increased tremendously due to its easy availability in electronic format. This has given a wide range of exposure to the research areas. An automated mechanism that processes legal data can lead the law to a new dimension. Different deep learning and artificial intelligence techniques have been applied to the Indian legal document. In this paper, we review about the different techniques like Recurrent Network Networks (RNN), Bidirectional Encoder Representations from Transformers (BERT), Robustly Optimized BERT Pre-training Approach(RoBERTa), Best Matching (BM25) algorithm, Support Vector Machine (SVM), Long Short-Term Memory(LSTM) that have been applied on the Indian legal document for summarising, prediction, text classification and multi-class text classification. This review will give a conclusion that the deep learning techniques will give a better performance than the others.","PeriodicalId":246214,"journal":{"name":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICICT54557.2022.9918013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The usage of legal documents has increased tremendously due to its easy availability in electronic format. This has given a wide range of exposure to the research areas. An automated mechanism that processes legal data can lead the law to a new dimension. Different deep learning and artificial intelligence techniques have been applied to the Indian legal document. In this paper, we review about the different techniques like Recurrent Network Networks (RNN), Bidirectional Encoder Representations from Transformers (BERT), Robustly Optimized BERT Pre-training Approach(RoBERTa), Best Matching (BM25) algorithm, Support Vector Machine (SVM), Long Short-Term Memory(LSTM) that have been applied on the Indian legal document for summarising, prediction, text classification and multi-class text classification. This review will give a conclusion that the deep learning techniques will give a better performance than the others.
印度法律文件的自动化技术综述
法律文件的使用已大大增加,因为它很容易以电子格式获得。这为研究领域提供了广泛的接触范围。处理法律数据的自动化机制可以将法律带入一个新的维度。不同的深度学习和人工智能技术已经应用于印度的法律文件。在本文中,我们回顾了不同的技术,如循环网络网络(RNN),双向编码器表示从变压器(BERT),鲁棒优化BERT预训练方法(RoBERTa),最佳匹配(BM25)算法,支持向量机(SVM),长短期记忆(LSTM),已应用于印度法律文件的摘要,预测,文本分类和多类文本分类。本文将给出一个结论,即深度学习技术将比其他技术具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信