A New Method for Solving Triangular Systems on Distributed Memory Message-Passing Multiprocessors

Guangye Li, T. Coleman
{"title":"A New Method for Solving Triangular Systems on Distributed Memory Message-Passing Multiprocessors","authors":"Guangye Li, T. Coleman","doi":"10.1137/0910025","DOIUrl":null,"url":null,"abstract":"Efficient triangular solvers for use on message passing multiprocessors are required, in several contexts, under the assumption that the matrix is distributed by columns (or rows) in a wrap fashion. In this paper we describe a new efficient parallel triangular solver for this problem. This new algorithm is based on the previous method of Li and Coleman [1986] but is considerably more efficient when $\\frac{n}{p}$ is relatively modest, where $p$ is the number of processors and $n$ is the problem dimension. A useful theoretical analysis is provided as well as extensive numerical results obtained on an Intel iPSC with $p \\leq 128$.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

Efficient triangular solvers for use on message passing multiprocessors are required, in several contexts, under the assumption that the matrix is distributed by columns (or rows) in a wrap fashion. In this paper we describe a new efficient parallel triangular solver for this problem. This new algorithm is based on the previous method of Li and Coleman [1986] but is considerably more efficient when $\frac{n}{p}$ is relatively modest, where $p$ is the number of processors and $n$ is the problem dimension. A useful theoretical analysis is provided as well as extensive numerical results obtained on an Intel iPSC with $p \leq 128$.
分布式内存消息传递多处理器上求解三角系统的新方法
在假定矩阵以换行方式按列(或行)分布的情况下,需要在消息传递多处理器上使用有效的三角形求解器。本文给出了一种新的有效的平行三角形求解器。这种新算法是基于Li和Coleman[1986]之前的方法,但当$\frac{n}{p}$相对较小时效率要高得多,其中$p$是处理器数量,$n$是问题维度。提供了一个有用的理论分析,以及广泛的数值结果上获得的英特尔iPSC $p \leq 128$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信