A New Model of Transformer Fault Diagnosis Based on ISOA-SVM

Junming Zhu, Yang Liu, Haiying Dong
{"title":"A New Model of Transformer Fault Diagnosis Based on ISOA-SVM","authors":"Junming Zhu, Yang Liu, Haiying Dong","doi":"10.1109/AEES56284.2022.10079656","DOIUrl":null,"url":null,"abstract":"In view of the defects of low model performance of traditional support vector machine (SVM), firstly, a nonlinear inertia weight based on cosine function is used to balance the exploration and foraging ability of seagull optimization algorithm (SOA), then proposes to use reverse learning strategy to reduce the defect of local optimization of seagull population, and can obtains the best parameters of SVM. Then, this paper uses two benchmark functions to compare improved-SOA (ISOA), particle swarm optimization (PSO), and SOA optimization performance. Compared with SOA and PSO, ISOA has better optimization performance. Finally, based on ISOA-SVM, this paper uses three-fold cross validation to diagnose the DGA data, and the diagnostic results are compared with PSO-SVM and SOA-SVM, the diagnosis performance of this model is better.","PeriodicalId":227496,"journal":{"name":"2022 3rd International Conference on Advanced Electrical and Energy Systems (AEES)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Advanced Electrical and Energy Systems (AEES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEES56284.2022.10079656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the defects of low model performance of traditional support vector machine (SVM), firstly, a nonlinear inertia weight based on cosine function is used to balance the exploration and foraging ability of seagull optimization algorithm (SOA), then proposes to use reverse learning strategy to reduce the defect of local optimization of seagull population, and can obtains the best parameters of SVM. Then, this paper uses two benchmark functions to compare improved-SOA (ISOA), particle swarm optimization (PSO), and SOA optimization performance. Compared with SOA and PSO, ISOA has better optimization performance. Finally, based on ISOA-SVM, this paper uses three-fold cross validation to diagnose the DGA data, and the diagnostic results are compared with PSO-SVM and SOA-SVM, the diagnosis performance of this model is better.
基于ISOA-SVM的变压器故障诊断新模型
针对传统支持向量机(SVM)模型性能不高的缺陷,首先利用基于余弦函数的非线性惯性权值来平衡海鸥优化算法(SOA)的探索和觅食能力,然后提出利用反向学习策略来减少海鸥种群局部优化的缺陷,从而得到支持向量机的最佳参数。然后,利用两个基准函数对改进后的SOA (ISOA)、粒子群优化(PSO)和SOA优化性能进行了比较。与SOA和PSO相比,ISOA具有更好的优化性能。最后,在ISOA-SVM的基础上,采用三重交叉验证对DGA数据进行诊断,并将诊断结果与PSO-SVM和SOA-SVM进行比较,该模型的诊断性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信