An Analysis of BERT in Document Ranking

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma
{"title":"An Analysis of BERT in Document Ranking","authors":"Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma","doi":"10.1145/3397271.3401325","DOIUrl":null,"url":null,"abstract":"Although BERT has shown its effectiveness in a number of IR-related tasks, especially document ranking, the understanding of its internal mechanism remains insufficient. To increase the explainability of the ranking process performed by BERT, we investigate a state-of-the-art BERT-based ranking model with focus on its attention mechanism and interaction behavior. Firstly, we look into the evolving of the attention distribution. It shows that in each step, BERT dumps redundant attention weights on tokens with high document frequency (such as periods). This may lead to a potential threat to the model robustness and should be considered in future studies. Secondly, we study how BERT models interactions between query and document and find that BERT aggregates document information to query token representations through their interactions, but extracts query-independent representations for document tokens. It indicates that it is possible to transform BERT into a more efficient representation-focused model. These findings help us better understand the ranking process by BERT and may inspire future improvement.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Although BERT has shown its effectiveness in a number of IR-related tasks, especially document ranking, the understanding of its internal mechanism remains insufficient. To increase the explainability of the ranking process performed by BERT, we investigate a state-of-the-art BERT-based ranking model with focus on its attention mechanism and interaction behavior. Firstly, we look into the evolving of the attention distribution. It shows that in each step, BERT dumps redundant attention weights on tokens with high document frequency (such as periods). This may lead to a potential threat to the model robustness and should be considered in future studies. Secondly, we study how BERT models interactions between query and document and find that BERT aggregates document information to query token representations through their interactions, but extracts query-independent representations for document tokens. It indicates that it is possible to transform BERT into a more efficient representation-focused model. These findings help us better understand the ranking process by BERT and may inspire future improvement.
BERT在文献排序中的应用分析
尽管BERT在许多与ir相关的任务中显示出其有效性,特别是文档排序,但对其内部机制的理解仍然不足。为了提高BERT进行排序过程的可解释性,我们研究了一种基于BERT的排名模型,重点研究了其注意机制和交互行为。首先,我们研究了注意力分布的演变。它表明,在每个步骤中,BERT都会将冗余的注意力权重转储到具有高文档频率(例如句号)的令牌上。这可能会对模型的稳健性造成潜在威胁,应在今后的研究中加以考虑。其次,我们研究了BERT如何建模查询和文档之间的交互,发现BERT通过它们之间的交互聚合文档信息来查询令牌表示,但提取文档令牌的查询无关表示。这表明将BERT转换为更有效的以表示为中心的模型是可能的。这些发现有助于我们更好地理解BERT的排名过程,并可能启发未来的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信