TRAILSENSE: Crowdsensing Risky Mountain Trail Segments

Keunseo Kim, Hengameh Zabihi, Heeyoung Kim, Uichin Lee
{"title":"TRAILSENSE: Crowdsensing Risky Mountain Trail Segments","authors":"Keunseo Kim, Hengameh Zabihi, Heeyoung Kim, Uichin Lee","doi":"10.1145/3276145.3276155","DOIUrl":null,"url":null,"abstract":"Excerpted from “TrailSense: A Crowdsensing System for Detecting Risky Mountain Trail Segments with Walking Pattern Analysis,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), with permission. https://dl.acm.org/citation.cfm?id=3131893 © ACM 2017 Mountain trail surface information is critical to prevent mountain accidents, such as falls. This article presents TrailSense, a mobile crowdsensing system that can automatically label risky mountain trail segments. TrailSense analyzes walking patterns of an individual hiker using smartphone sensing. The results from multiple hikers are then aggregated in the cloud for accurate labeling. Our results from two real-world datasets show that TrailSense can identify, fairly accurately, risky trail segments with crowdsensing. Mountain climbing is a popular outdoor leisure activity. In the United States, for Keunseo Kim, Hengameh Zabihi, Heeyoung Kim, Uichin Lee Korea Advanced Institute of Science and Technology (KAIST).","PeriodicalId":213775,"journal":{"name":"GetMobile Mob. Comput. Commun.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GetMobile Mob. Comput. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276145.3276155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Excerpted from “TrailSense: A Crowdsensing System for Detecting Risky Mountain Trail Segments with Walking Pattern Analysis,” in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), with permission. https://dl.acm.org/citation.cfm?id=3131893 © ACM 2017 Mountain trail surface information is critical to prevent mountain accidents, such as falls. This article presents TrailSense, a mobile crowdsensing system that can automatically label risky mountain trail segments. TrailSense analyzes walking patterns of an individual hiker using smartphone sensing. The results from multiple hikers are then aggregated in the cloud for accurate labeling. Our results from two real-world datasets show that TrailSense can identify, fairly accurately, risky trail segments with crowdsensing. Mountain climbing is a popular outdoor leisure activity. In the United States, for Keunseo Kim, Hengameh Zabihi, Heeyoung Kim, Uichin Lee Korea Advanced Institute of Science and Technology (KAIST).
TRAILSENSE:群众感知危险的山地步道段
摘自“TrailSense:一种通过步行模式分析来检测危险山地步道段的众感系统”,发表于美国计算机学会交互式、移动、可穿戴和无处不在技术会议录(IMWUT),已获许可。https://dl.acm.org/citation.cfm?id=3131893©ACM 2017山地步道表面信息对于防止山地事故(如坠落)至关重要。这篇文章介绍了TrailSense,一个移动众测系统,可以自动标记危险的山地步道段。TrailSense利用智能手机感应技术分析个人徒步旅行者的行走模式。然后将多个徒步旅行者的结果汇总到云中以进行准确标记。我们从两个真实世界的数据集得出的结果表明,TrailSense可以相当准确地识别有风险的步道路段。爬山是一项很受欢迎的户外休闲活动。在美国,为Keunseo Kim, Hengameh Zabihi, Heeyoung Kim, Uichin Lee韩国科学技术院(KAIST)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信