Essential Spectrum of Discrete Laplacian – Revisited

V. B. Kiran Kumar
{"title":"Essential Spectrum of Discrete Laplacian – Revisited","authors":"V. B. Kiran Kumar","doi":"10.17993/3ctic.2022.112.52-59","DOIUrl":null,"url":null,"abstract":"Consider the discrete Laplacian operator A acting on l2(Z). It is well known from the classical literature that the essential spectrum of A is a compact interval. In this article, we give an elementary proof for this result, using the finite-dimensional truncations An of A. We do not rely on symbol analysis or any infinite-dimensional arguments. Instead, we consider the eigenvalue-sequences of the truncations An and make use of the filtration techniques due to Arveson. Usage of such techniques to the discrete Schrödinger operator and to the multi-dimensional settings will be interesting future problems.","PeriodicalId":237333,"journal":{"name":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctic.2022.112.52-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Consider the discrete Laplacian operator A acting on l2(Z). It is well known from the classical literature that the essential spectrum of A is a compact interval. In this article, we give an elementary proof for this result, using the finite-dimensional truncations An of A. We do not rely on symbol analysis or any infinite-dimensional arguments. Instead, we consider the eigenvalue-sequences of the truncations An and make use of the filtration techniques due to Arveson. Usage of such techniques to the discrete Schrödinger operator and to the multi-dimensional settings will be interesting future problems.
离散拉普拉斯函数的本质谱
考虑作用于l2(Z)的离散拉普拉斯算子A。从经典文献中我们知道,A的本质谱是紧化区间。在本文中,我们使用a的有限维截断an给出了这个结果的初等证明。我们不依赖于符号分析或任何无限维参数。相反,我们考虑截断An的特征值序列,并利用由于Arveson的过滤技术。将这些技术应用于离散的Schrödinger运算符和多维设置将是未来有趣的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信