{"title":"A novel wideband multi-permittivity composite dielectric resonator antenna for wireless applications","authors":"R. Cicchetti, E. Miozzi, O. Testa","doi":"10.1109/APWC.2016.7738121","DOIUrl":null,"url":null,"abstract":"A novel high-gain dielectric resonator antenna (DRA) for wideband wireless applications is presented. The antenna is composed of a hollow cylindrical dielectric resonator (DR) inside which an assembly of two dielectric truncated cones having different permittivities are inserted. A suitable probe excitation system and an air gap, realized between the base of the first truncated dielectric cone and the ground plane, are used to further increase the antenna bandwidth. A full-wave commercial software based on the finite integration technique (FIT) has been used to analyze and design the antenna, while the singularity-extraction method (SEM) has been adopted to extract information about the main resonant processes taking place in the proposed radiating structure.","PeriodicalId":143796,"journal":{"name":"2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWC.2016.7738121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A novel high-gain dielectric resonator antenna (DRA) for wideband wireless applications is presented. The antenna is composed of a hollow cylindrical dielectric resonator (DR) inside which an assembly of two dielectric truncated cones having different permittivities are inserted. A suitable probe excitation system and an air gap, realized between the base of the first truncated dielectric cone and the ground plane, are used to further increase the antenna bandwidth. A full-wave commercial software based on the finite integration technique (FIT) has been used to analyze and design the antenna, while the singularity-extraction method (SEM) has been adopted to extract information about the main resonant processes taking place in the proposed radiating structure.