Classification of urban structural types with multisource data and structured models

Arnaud Poncet Montanges, G. Moser, H. Taubenböck, M. Wurm, D. Tuia
{"title":"Classification of urban structural types with multisource data and structured models","authors":"Arnaud Poncet Montanges, G. Moser, H. Taubenböck, M. Wurm, D. Tuia","doi":"10.1109/JURSE.2015.7120489","DOIUrl":null,"url":null,"abstract":"In this paper, we study the land use distribution of the city of Munich, Germany. We describe the city as a set of Urban Structural Types (UST) related to the type of spatial patterns occurring within regions composed of 200m side cells. To do so, we resort to a set of multimodal descriptors extracted from remote sensing data, a 3D city model and open access vector information. Based on these descriptors, we train a SVM classifier and apply two structured prediction models to enforce spatial relationships (Markov and Conditional Random fields).","PeriodicalId":207233,"journal":{"name":"2015 Joint Urban Remote Sensing Event (JURSE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint Urban Remote Sensing Event (JURSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2015.7120489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we study the land use distribution of the city of Munich, Germany. We describe the city as a set of Urban Structural Types (UST) related to the type of spatial patterns occurring within regions composed of 200m side cells. To do so, we resort to a set of multimodal descriptors extracted from remote sensing data, a 3D city model and open access vector information. Based on these descriptors, we train a SVM classifier and apply two structured prediction models to enforce spatial relationships (Markov and Conditional Random fields).
基于多源数据和结构化模型的城市结构类型分类
本文研究了德国慕尼黑城市的土地利用分布。我们将城市描述为一组城市结构类型(UST),这些类型与由200万个侧单元组成的区域内发生的空间模式类型相关。为此,我们采用了一组从遥感数据中提取的多模态描述符、一个三维城市模型和开放获取的矢量信息。基于这些描述符,我们训练了一个SVM分类器,并应用两个结构化预测模型来强化空间关系(马尔可夫和条件随机场)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信