Illumination Invariant Face Recognition By Expected Patch Log Likelihood

Zijian Zhang, Min Yao
{"title":"Illumination Invariant Face Recognition By Expected Patch Log Likelihood","authors":"Zijian Zhang, Min Yao","doi":"10.1109/ISSPIT51521.2020.9408918","DOIUrl":null,"url":null,"abstract":"Illumination is an important factor that impairs face recognition. Many algorithms have been proposed to solve the illumination problem. Most algorithms focus on one image information and only use local illumination change, to improve the effects of removing facial illumination. In this paper, we apply the Expected Patch Log Likelihood (EPLL) algorithm to extract illumination weight and we combine it with the Neighboring Radiance Ratio algorithm (NRR) to optimize the initial vector of the Gaussian mixture model, which makes full use of the redundant information in images. The experimental results on the extended Yale B and CMU PIE face databases show that the proposed algorithm can effectively eliminate the influence of illumination on face images and has a high robustness.","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Illumination is an important factor that impairs face recognition. Many algorithms have been proposed to solve the illumination problem. Most algorithms focus on one image information and only use local illumination change, to improve the effects of removing facial illumination. In this paper, we apply the Expected Patch Log Likelihood (EPLL) algorithm to extract illumination weight and we combine it with the Neighboring Radiance Ratio algorithm (NRR) to optimize the initial vector of the Gaussian mixture model, which makes full use of the redundant information in images. The experimental results on the extended Yale B and CMU PIE face databases show that the proposed algorithm can effectively eliminate the influence of illumination on face images and has a high robustness.
基于期望补丁日志似然的光照不变人脸识别
光照是影响人脸识别的重要因素。人们提出了许多算法来解决照明问题。大多数算法只关注一个图像信息,只使用局部光照变化,以提高去除面部光照的效果。本文采用期望Patch Log Likelihood (EPLL)算法提取光照权重,并结合邻域辐亮度比算法(NRR)优化高斯混合模型的初始向量,充分利用了图像中的冗余信息。在扩展的Yale B和CMU PIE人脸数据库上的实验结果表明,该算法能有效消除光照对人脸图像的影响,具有较高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信