Line Graphics Digitization: A Step Towards Full Automation

Omar Moured, Jiaming Zhang, Alina Roitberg, Thorsten Schwarz, R. Stiefelhagen
{"title":"Line Graphics Digitization: A Step Towards Full Automation","authors":"Omar Moured, Jiaming Zhang, Alina Roitberg, Thorsten Schwarz, R. Stiefelhagen","doi":"10.48550/arXiv.2307.02065","DOIUrl":null,"url":null,"abstract":"The digitization of documents allows for wider accessibility and reproducibility. While automatic digitization of document layout and text content has been a long-standing focus of research, this problem in regard to graphical elements, such as statistical plots, has been under-explored. In this paper, we introduce the task of fine-grained visual understanding of mathematical graphics and present the Line Graphics (LG) dataset, which includes pixel-wise annotations of 5 coarse and 10 fine-grained categories. Our dataset covers 520 images of mathematical graphics collected from 450 documents from different disciplines. Our proposed dataset can support two different computer vision tasks, i.e., semantic segmentation and object detection. To benchmark our LG dataset, we explore 7 state-of-the-art models. To foster further research on the digitization of statistical graphs, we will make the dataset, code, and models publicly available to the community.","PeriodicalId":294655,"journal":{"name":"IEEE International Conference on Document Analysis and Recognition","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.02065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The digitization of documents allows for wider accessibility and reproducibility. While automatic digitization of document layout and text content has been a long-standing focus of research, this problem in regard to graphical elements, such as statistical plots, has been under-explored. In this paper, we introduce the task of fine-grained visual understanding of mathematical graphics and present the Line Graphics (LG) dataset, which includes pixel-wise annotations of 5 coarse and 10 fine-grained categories. Our dataset covers 520 images of mathematical graphics collected from 450 documents from different disciplines. Our proposed dataset can support two different computer vision tasks, i.e., semantic segmentation and object detection. To benchmark our LG dataset, we explore 7 state-of-the-art models. To foster further research on the digitization of statistical graphs, we will make the dataset, code, and models publicly available to the community.
直线图形数字化:迈向完全自动化的一步
文件的数字化允许更广泛的可访问性和可重复性。虽然文档布局和文本内容的自动数字化一直是研究的焦点,但关于图形元素(如统计图)的这个问题尚未得到充分探索。在本文中,我们介绍了细粒度视觉理解数学图形的任务,并提出了直线图形(Line graphics, LG)数据集,该数据集包括5个粗粒度和10个细粒度类别的逐像素注释。我们的数据集涵盖了从450个不同学科的文献中收集的520张数学图形图像。我们提出的数据集可以支持两种不同的计算机视觉任务,即语义分割和目标检测。为了对LG数据集进行基准测试,我们探索了7个最先进的模型。为了促进统计图形数字化的进一步研究,我们将向社区公开数据集、代码和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信