Stochastic Integration in Abstract Spaces

J. K. Brooks, J. Koziński
{"title":"Stochastic Integration in Abstract Spaces","authors":"J. K. Brooks, J. Koziński","doi":"10.1155/2010/217372","DOIUrl":null,"url":null,"abstract":"We establish the existence of a stochastic integral in a nuclear space setting as follows. Let 𝐸, 𝐹, and 𝐺 be nuclear spaces which satisfy the following conditions: the spaces are reflexive, complete, bornological spaces such that their strong duals also satisfy these conditions. Assume that there is a continuous bilinear mapping of 𝐸×𝐹 into 𝐺. If 𝐻 is an integrable, 𝐸-valued predictable process and 𝑋 is an 𝐹-valued square integrable martingale, then there exists a 𝐺-valued process (∫𝐻𝑑𝑋)𝑡 called the stochastic integral. The Lebesgue space of these integrable processes is studied and convergence theorems are given. Extensions to general locally convex spaces are presented.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/217372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We establish the existence of a stochastic integral in a nuclear space setting as follows. Let 𝐸, 𝐹, and 𝐺 be nuclear spaces which satisfy the following conditions: the spaces are reflexive, complete, bornological spaces such that their strong duals also satisfy these conditions. Assume that there is a continuous bilinear mapping of 𝐸×𝐹 into 𝐺. If 𝐻 is an integrable, 𝐸-valued predictable process and 𝑋 is an 𝐹-valued square integrable martingale, then there exists a 𝐺-valued process (∫𝐻𝑑𝑋)𝑡 called the stochastic integral. The Lebesgue space of these integrable processes is studied and convergence theorems are given. Extensions to general locally convex spaces are presented.
抽象空间中的随机积分
我们在核空间中建立随机积分的存在性。设、𝐺为满足以下条件的核空间:空间是自反的、完备的、bornological的空间,其强对偶也满足这些条件。假设有一个连续的双线性映射𝐸× . .如果𝐻是一个可积的𝐸-valued可预测过程,𝑋是一个𝐹-valued平方可积的鞅,那么存在一个𝐺-valued过程(∫𝐻𝑑𝑋)𝑡称为随机积分。研究了这些可积过程的Lebesgue空间,并给出了收敛定理。给出了对一般局部凸空间的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信