ADHERENTLY PENALIZED LINEAR DISCRIMINANT ANALYSIS

H. Hino, Jun Fujiki
{"title":"ADHERENTLY PENALIZED LINEAR DISCRIMINANT ANALYSIS","authors":"H. Hino, Jun Fujiki","doi":"10.5183/JJSCS.1412001_219","DOIUrl":null,"url":null,"abstract":"A problem of supervised learning in which the data consist of p features and n observations is considered. Each observation is assumed to belong to either one of the two classes. Linear discriminant analysis (LDA) has been widely used for both classification and dimensionality reduction in this setting. However, when the dimensionality p is high and the observations are scarce, LDA does not offer a satisfactory result for classification. Witten & Tibshirani (2011) proposed the penalized LDA based on the Fisher’s discriminant problem with sparsity penalization. In this paper, an elastic-net type penalization is considered for LDA, and the corresponding optimization problem is efficiently solved.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1412001_219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A problem of supervised learning in which the data consist of p features and n observations is considered. Each observation is assumed to belong to either one of the two classes. Linear discriminant analysis (LDA) has been widely used for both classification and dimensionality reduction in this setting. However, when the dimensionality p is high and the observations are scarce, LDA does not offer a satisfactory result for classification. Witten & Tibshirani (2011) proposed the penalized LDA based on the Fisher’s discriminant problem with sparsity penalization. In this paper, an elastic-net type penalization is considered for LDA, and the corresponding optimization problem is efficiently solved.
坚持惩罚线性判别分析
考虑了一个由p个特征和n个观测值组成的数据的监督学习问题。假设每个观测值属于这两类中的任意一类。线性判别分析(LDA)已被广泛用于这种情况下的分类和降维。然而,当维数p较高且观测值较少时,LDA的分类效果并不理想。Witten & Tibshirani(2011)在Fisher判别问题的基础上提出了带有稀疏性惩罚的惩罚LDA。本文考虑了LDA的弹性网型惩罚,有效地解决了相应的优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信