Evaluating parametric holonomic sequences using rectangular splitting

Fredrik Johansson
{"title":"Evaluating parametric holonomic sequences using rectangular splitting","authors":"Fredrik Johansson","doi":"10.1145/2608628.2608629","DOIUrl":null,"url":null,"abstract":"We adapt the rectangular splitting technique of Paterson and Stockmeyer to the problem of evaluating terms in holonomic sequences that depend on a parameter. This approach allows computing the n-th term in a recurrent sequence of suitable type using O(n1/2) \"expensive\" operations at the cost of an increased number of \"cheap\" operations.\n Rectangular splitting has little overhead and can perform better than either naive evaluation or asymptotically faster algorithms for ranges of n encountered in applications. As an example, fast numerical evaluation of the gamma function is investigated. Our work generalizes two previous algorithms of Smith.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We adapt the rectangular splitting technique of Paterson and Stockmeyer to the problem of evaluating terms in holonomic sequences that depend on a parameter. This approach allows computing the n-th term in a recurrent sequence of suitable type using O(n1/2) "expensive" operations at the cost of an increased number of "cheap" operations. Rectangular splitting has little overhead and can perform better than either naive evaluation or asymptotically faster algorithms for ranges of n encountered in applications. As an example, fast numerical evaluation of the gamma function is investigated. Our work generalizes two previous algorithms of Smith.
用矩形分裂评价参数完整序列
将Paterson和Stockmeyer的矩形分裂技术应用于含参数的完整序列中项的求值问题。这种方法允许使用O(n1/2)计算合适类型的循环序列中的第n项。“昂贵”的操作以增加“廉价”操作的数量为代价。矩形分割的开销很小,对于应用程序中遇到的n范围,它比单纯求值或渐近更快的算法执行得更好。作为一个例子,研究了伽马函数的快速数值计算。我们的工作推广了Smith之前的两个算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信