Predicting Success in Massive Open Online Courses (MOOCs) Using Cohesion Network Analysis

S. Crossley, M. Dascalu, D. McNamara, R. Baker, Stefan Trausan-Matu
{"title":"Predicting Success in Massive Open Online Courses (MOOCs) Using Cohesion Network Analysis","authors":"S. Crossley, M. Dascalu, D. McNamara, R. Baker, Stefan Trausan-Matu","doi":"10.22318/CSCL2017.17","DOIUrl":null,"url":null,"abstract":"This study uses Cohesion Network Analysis (CNA) indices to identify student patterns related to course completion in a massive open online course (MOOC). This analysis examines a subsample of 320 students who completed at least one graded assignment and produced at least 50 words in discussion forums in a MOOC on educational data mining. The findings indicate that CNA indices predict with substantial accuracy (76%) whether students complete the MOOC, helping us to better understand student retention in this MOOC and to develop more actionable automated signals of student success.","PeriodicalId":120843,"journal":{"name":"International Conference on Computer Supported Collaborative Learning","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Supported Collaborative Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22318/CSCL2017.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

This study uses Cohesion Network Analysis (CNA) indices to identify student patterns related to course completion in a massive open online course (MOOC). This analysis examines a subsample of 320 students who completed at least one graded assignment and produced at least 50 words in discussion forums in a MOOC on educational data mining. The findings indicate that CNA indices predict with substantial accuracy (76%) whether students complete the MOOC, helping us to better understand student retention in this MOOC and to develop more actionable automated signals of student success.
利用内聚网络分析预测大规模在线开放课程(MOOCs)的成功
本研究使用凝聚力网络分析(CNA)指标来识别大规模在线开放课程(MOOC)中与课程完成相关的学生模式。本分析考察了320名学生的子样本,这些学生在教育数据挖掘的MOOC论坛上完成了至少一项评分作业,并发表了至少50个单词。研究结果表明,CNA指数预测学生是否完成了MOOC课程,准确率很高(76%),这有助于我们更好地了解学生在MOOC课程中的保留率,并开发出更多可操作的学生成功自动化信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信