CNN Model with Parameter Optimisation for Fine-Grained Banana Ripening Stage Classification

Zaid Cahya, D. Cahya, T. Nugroho, Ardani Zuhri, W. Agusta
{"title":"CNN Model with Parameter Optimisation for Fine-Grained Banana Ripening Stage Classification","authors":"Zaid Cahya, D. Cahya, T. Nugroho, Ardani Zuhri, W. Agusta","doi":"10.1145/3575882.3575900","DOIUrl":null,"url":null,"abstract":"Fruit grading is a significant problem in the fruit industry because each maturity stage of the fruit represents a distinct economic worth. Banana is one of the most mass-produced fruits that must be visually classified. However, because human eye perception varies, precise classification using a machine is necessary to standardise the grading system. This research develops a four-layered CNN deep-learning model to classify bananas into seven ripening stages. To train the model, we employed Mazen and Nashat dataset and expanded it using data augmentation techniques. As a baseline, we trained a basic four-layer CNN model and achieved 88.2% of accuracy in fine-grained categorisation due to the similarity of the adjacent ripening class. To enhance the accuracy of our basic model, we applied a parameter optimisation approach to get the best hyper-parameters for the profound banana ripeness indicator. As a result, the time-constrained parameter optimisation method that we utilised successfully increased the model accuracy up to 91.2% and the F1 score at 90.5%, which is satisfactory for fine-grained banana classification compared to the previous research.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fruit grading is a significant problem in the fruit industry because each maturity stage of the fruit represents a distinct economic worth. Banana is one of the most mass-produced fruits that must be visually classified. However, because human eye perception varies, precise classification using a machine is necessary to standardise the grading system. This research develops a four-layered CNN deep-learning model to classify bananas into seven ripening stages. To train the model, we employed Mazen and Nashat dataset and expanded it using data augmentation techniques. As a baseline, we trained a basic four-layer CNN model and achieved 88.2% of accuracy in fine-grained categorisation due to the similarity of the adjacent ripening class. To enhance the accuracy of our basic model, we applied a parameter optimisation approach to get the best hyper-parameters for the profound banana ripeness indicator. As a result, the time-constrained parameter optimisation method that we utilised successfully increased the model accuracy up to 91.2% and the F1 score at 90.5%, which is satisfactory for fine-grained banana classification compared to the previous research.
细粒香蕉成熟期分类的CNN参数优化模型
水果分级是水果行业的一个重要问题,因为水果的每个成熟阶段都代表着不同的经济价值。香蕉是最大规模生产的水果之一,必须进行视觉分类。然而,由于人眼的感知是不同的,使用机器进行精确分类是标准化分级系统所必需的。本研究开发了一个四层CNN深度学习模型,将香蕉分为七个成熟阶段。为了训练模型,我们使用了Mazen和Nashat数据集,并使用数据增强技术对其进行了扩展。作为基线,我们训练了一个基本的四层CNN模型,由于相邻成熟类的相似性,在细粒度分类中获得了88.2%的准确率。为了提高基本模型的准确性,我们采用了参数优化方法来获得深度香蕉成熟度指标的最佳超参数。结果表明,我们使用的时间约束参数优化方法成功地将模型精度提高到91.2%,F1分数达到90.5%,与以往的研究相比,可以满足细粒香蕉的分类要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信