GPU assisted processing of point cloud data sets for ground segmentation in autonomous vehicles

S. Baker, R. W. Sadowski
{"title":"GPU assisted processing of point cloud data sets for ground segmentation in autonomous vehicles","authors":"S. Baker, R. W. Sadowski","doi":"10.1109/TePRA.2013.6556352","DOIUrl":null,"url":null,"abstract":"In autonomous ground systems, developing a clear model of the surroundings is crucial for operating in any environment. Three-dimensional light detection and ranging (LIDAR) sensors, such as the Velodyne HDL-64E S2, are powerful tools for robotic perception. However, these sensors generate large data sets exceeding one million points per second that can be difficult to use on space, power, and processing constrained platforms. We report on GPU assisted processing within a Robotic Operating System (ROS) environment capable of achieving greater than an order of magnitude reduction in point cloud ground segmentation processing time using a gradient field algorithm with only a small increase in power consumption.","PeriodicalId":102284,"journal":{"name":"2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TePRA.2013.6556352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In autonomous ground systems, developing a clear model of the surroundings is crucial for operating in any environment. Three-dimensional light detection and ranging (LIDAR) sensors, such as the Velodyne HDL-64E S2, are powerful tools for robotic perception. However, these sensors generate large data sets exceeding one million points per second that can be difficult to use on space, power, and processing constrained platforms. We report on GPU assisted processing within a Robotic Operating System (ROS) environment capable of achieving greater than an order of magnitude reduction in point cloud ground segmentation processing time using a gradient field algorithm with only a small increase in power consumption.
GPU辅助处理自动驾驶车辆地面分割的点云数据集
在自主地面系统中,建立一个清晰的环境模型对于在任何环境下运行都至关重要。三维光探测和测距(LIDAR)传感器,如Velodyne HDL-64E S2,是机器人感知的强大工具。然而,这些传感器每秒产生超过一百万点的大型数据集,很难在空间、功率和处理受限的平台上使用。我们报告了机器人操作系统(ROS)环境中的GPU辅助处理,该环境能够使用梯度场算法在点云地面分割处理时间上实现大于一个数量级的减少,而功耗仅略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信