Evolutionary Selection of Kernels in Support Vector Machines

K. Thadani, Ashutosh, V. Jayaraman, V. Sundararajan
{"title":"Evolutionary Selection of Kernels in Support Vector Machines","authors":"K. Thadani, Ashutosh, V. Jayaraman, V. Sundararajan","doi":"10.1109/ADCOM.2006.4289849","DOIUrl":null,"url":null,"abstract":"A machine learning algorithm using evolutionary algorithms and Support Vector Machines is presented. The kernel function of support vector machines are evolved using recently introduced Gene Expression Programming algorithms. This technique trains a support vector machine with the kernel function most suitable for the training data set rather than pre-specifying the kernel function. The fitness of the kernel is measured by calculating cross validation accuracy. SVM trained with the fittest kernels is then used to classify previously unseen data. The algorithm is elucidated using preliminary case studies for classification of cancer data and bank transaction data set. It is shown that the Evolutionary Support Vector Machine has good generalization properties when compared with Support Vector Machines using standard (polynomial and radial basis) kernel functions.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A machine learning algorithm using evolutionary algorithms and Support Vector Machines is presented. The kernel function of support vector machines are evolved using recently introduced Gene Expression Programming algorithms. This technique trains a support vector machine with the kernel function most suitable for the training data set rather than pre-specifying the kernel function. The fitness of the kernel is measured by calculating cross validation accuracy. SVM trained with the fittest kernels is then used to classify previously unseen data. The algorithm is elucidated using preliminary case studies for classification of cancer data and bank transaction data set. It is shown that the Evolutionary Support Vector Machine has good generalization properties when compared with Support Vector Machines using standard (polynomial and radial basis) kernel functions.
支持向量机核的进化选择
提出了一种基于进化算法和支持向量机的机器学习算法。支持向量机的核函数是利用最近引入的基因表达式编程算法进行演化的。该技术不是预先指定核函数,而是用最适合训练数据集的核函数来训练支持向量机。通过计算交叉验证精度来衡量核的适应度。然后使用最适合的核训练的支持向量机对以前未见过的数据进行分类。通过对癌症数据和银行交易数据集进行分类的初步案例研究,对该算法进行了阐述。结果表明,与使用标准(多项式和径向基)核函数的支持向量机相比,进化支持向量机具有良好的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信