Evaluating products of nonlinear functions by indirect bipartite table lookup

D. Matula, A. Fit-Florea, L. McFearin
{"title":"Evaluating products of nonlinear functions by indirect bipartite table lookup","authors":"D. Matula, A. Fit-Florea, L. McFearin","doi":"10.1109/ASAP.2002.1030710","DOIUrl":null,"url":null,"abstract":"Many function approximation procedures can obtain enhanced accuracy by an efficient table lookup of a product z=f(x)g(y). Both x and y are represented by indices of i leading bits (typically 7<i<16) for arguments normalized to [0, 1] or [1, 2]. Direct bipartite lookup employs 1/2 bits each of x and y yielding roughly an 1/2 bit result which can lose 2 to 3 bits of accuracy when f and g are nonlinear. Indirect bipartite lookup first generates i/2 bit interval index values for f(x) and g(y) using separate j-bits-in 1/2bits-out tables for f(x) and g(y) where i/2<j<i and is chosen large enough to substantially reduce the effect of nonlinearity in f(x) and g(y). The separate tables readily compensate for the high nonlinearity in f and/or g and generate interval index values representing intervals that can be tailored to minimize the maximum error of the product z=f(x)g(y) determined by an interval product table with the concatenated interval indices as the i bit input. We describe several variations in interval index generation methodology and in the design of the interval product table lookup architecture so as to obtain accuracy of 1/2 bits (or better) in output in 2-3 cycles of table lookup latency.","PeriodicalId":424082,"journal":{"name":"Proceedings IEEE International Conference on Application- Specific Systems, Architectures, and Processors","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application- Specific Systems, Architectures, and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2002.1030710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many function approximation procedures can obtain enhanced accuracy by an efficient table lookup of a product z=f(x)g(y). Both x and y are represented by indices of i leading bits (typically 7
用间接二部表查找法求非线性函数的乘积
许多函数近似程序可以通过对积z=f(x)g(y)进行有效的表查找来提高精度。对于规范化为[0,1]或[1,2]的参数,x和y都由i个前导位的索引表示(通常为7
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信