{"title":"2 Une onde de Dirac augmentée visant l’unification des interactions","authors":"C. Daviau, J. Bertrand, D. Girardot","doi":"10.1051/978-2-7598-2265-2.C029","DOIUrl":null,"url":null,"abstract":"An increased Dirac’s wave aimed at unified interactions. We study a wave spreading the quantic wave of the electron (Dirac spinor), which components represent all elementary particles, electron, neutrino, quarks with 3 colors, and their antiparticles , interacting for the first generation. The wave equation is an extension of the electron Dirac equation with a mass term. It is relativistic invariant under a widened group and invariant under the gauge model of the standard model (exactly). This equation reports a large part of the standard model by using less free parameters. We also reduce the conceptual gap between quantum fields theory and general relativity.","PeriodicalId":282223,"journal":{"name":"Ondes, matière et Univers","volume":"422 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ondes, matière et Univers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/978-2-7598-2265-2.C029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An increased Dirac’s wave aimed at unified interactions. We study a wave spreading the quantic wave of the electron (Dirac spinor), which components represent all elementary particles, electron, neutrino, quarks with 3 colors, and their antiparticles , interacting for the first generation. The wave equation is an extension of the electron Dirac equation with a mass term. It is relativistic invariant under a widened group and invariant under the gauge model of the standard model (exactly). This equation reports a large part of the standard model by using less free parameters. We also reduce the conceptual gap between quantum fields theory and general relativity.