Collating time-series resource data for system-wide job profiling

V. Bumgardner, V. Marek, Ray L. Hyatt
{"title":"Collating time-series resource data for system-wide job profiling","authors":"V. Bumgardner, V. Marek, Ray L. Hyatt","doi":"10.1109/NOMS.2016.7502958","DOIUrl":null,"url":null,"abstract":"Through the collection and association of discrete time-series resource metrics and workloads, we can both provide benchmark and intra-job resource collations, along with system-wide job profiling. Traditional RDBMSes are not designed to store and process long-term discrete time-series metrics and the commonly used resolution-reducing round robin databases (RRDB), make poor long-term sources of data for workload analytics. We implemented a system that employs “Big-data” (Hadoop/HBase) and other analytics (R) techniques and tools to store, process, and characterize HPC workloads. Using this system we have collected and processed over a 30 billion time-series metrics from existing short-term high-resolution (15-sec RRDB) sources, profiling over 200 thousand jobs across a wide spectrum of workloads. The system is currently in use at the University of Kentucky for better understanding of individual jobs and system-wide profiling as well as a strategic source of data for resource allocation and future acquisitions.","PeriodicalId":344879,"journal":{"name":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2016.7502958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Through the collection and association of discrete time-series resource metrics and workloads, we can both provide benchmark and intra-job resource collations, along with system-wide job profiling. Traditional RDBMSes are not designed to store and process long-term discrete time-series metrics and the commonly used resolution-reducing round robin databases (RRDB), make poor long-term sources of data for workload analytics. We implemented a system that employs “Big-data” (Hadoop/HBase) and other analytics (R) techniques and tools to store, process, and characterize HPC workloads. Using this system we have collected and processed over a 30 billion time-series metrics from existing short-term high-resolution (15-sec RRDB) sources, profiling over 200 thousand jobs across a wide spectrum of workloads. The system is currently in use at the University of Kentucky for better understanding of individual jobs and system-wide profiling as well as a strategic source of data for resource allocation and future acquisitions.
整理时间序列资源数据,用于系统范围的作业分析
通过收集和关联离散时间序列资源指标和工作负载,我们可以提供基准和作业内部资源排序,以及系统范围的作业分析。传统的rdbms并不是为存储和处理长期离散时间序列指标而设计的,而常用的降低分辨率的轮询数据库(RRDB)不能作为工作负载分析的长期数据源。我们实现了一个使用“大数据”(Hadoop/HBase)和其他分析(R)技术和工具来存储、处理和表征HPC工作负载的系统。使用该系统,我们已经从现有的短期高分辨率(15秒RRDB)来源收集和处理了超过300亿个时间序列指标,分析了各种工作负载中的20多万个作业。该系统目前在肯塔基大学使用,用于更好地了解单个工作和系统范围的分析,以及资源分配和未来采购的战略数据来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信