Low power BIST for Wallace tree-based multipliers

D. Bakalis, D. Nikolos, G. Alexiou, E. Kalligeros, H. T. Vergos
{"title":"Low power BIST for Wallace tree-based multipliers","authors":"D. Bakalis, D. Nikolos, G. Alexiou, E. Kalligeros, H. T. Vergos","doi":"10.1109/ISQED.2000.838914","DOIUrl":null,"url":null,"abstract":"The low power as a feature of a BIST scheme is a significant target due to quality as well as cost related issues. In this paper we examine the testability of multipliers based on Booth encoding and Wallace tree summation of the partial products and we present a methodology for deriving a low power Built In Self Test (BIST) scheme for them. We propose several design rules for designing the Wallace tree in order to be fully testable under the cell fault model. The proposed low power BIST scheme for the derived multipliers is achieved by: (a) introducing suitable Test Pattern Generators (TPG); (b) properly assigning the TPG outputs to the multiplier inputs; and (c) significantly reducing the test set length with respect to earlier schemes; Our results indicate that the total power dissipated during test can be reduced from 64.8% to 72.8%, while the average power per test vector can be reduced from 19.6% to 27.4% and the peak power dissipation can be reduced from 16.8% to 36.0%, depending on the implementation of the basic cells and the size of the multiplier. The test application time is also significantly reduced, while the introduced BIST scheme implementation area is small.","PeriodicalId":113766,"journal":{"name":"Proceedings IEEE 2000 First International Symposium on Quality Electronic Design (Cat. No. PR00525)","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 2000 First International Symposium on Quality Electronic Design (Cat. No. PR00525)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2000.838914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The low power as a feature of a BIST scheme is a significant target due to quality as well as cost related issues. In this paper we examine the testability of multipliers based on Booth encoding and Wallace tree summation of the partial products and we present a methodology for deriving a low power Built In Self Test (BIST) scheme for them. We propose several design rules for designing the Wallace tree in order to be fully testable under the cell fault model. The proposed low power BIST scheme for the derived multipliers is achieved by: (a) introducing suitable Test Pattern Generators (TPG); (b) properly assigning the TPG outputs to the multiplier inputs; and (c) significantly reducing the test set length with respect to earlier schemes; Our results indicate that the total power dissipated during test can be reduced from 64.8% to 72.8%, while the average power per test vector can be reduced from 19.6% to 27.4% and the peak power dissipation can be reduced from 16.8% to 36.0%, depending on the implementation of the basic cells and the size of the multiplier. The test application time is also significantly reduced, while the introduced BIST scheme implementation area is small.
Wallace树乘数器的低功耗BIST
由于与质量和成本相关的问题,低功耗是BIST方案的一个重要目标。在本文中,我们研究了基于Booth编码和Wallace树和部分积的乘法器的可测试性,并提出了一种为它们推导低功耗内置自检(BIST)方案的方法。为了使Wallace树在单元故障模型下完全可测试,我们提出了几种设计规则。通过引入合适的测试模式发生器(TPG)实现了所提出的低功耗BIST方案;(b)将TPG的产出适当分配给乘数投入;(c)相对于之前的方案显著缩短了测试集长度;结果表明,根据基本单元的实现和乘法器的尺寸不同,测试过程中的总功耗可以从64.8%降低到72.8%,每个测试向量的平均功耗可以从19.6%降低到27.4%,峰值功耗可以从16.8%降低到36.0%。测试申请时间也大大缩短,同时引入的BIST方案实施面积小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信