Performance evaluation of image noise reduction computing on a mobile platform

J. Hannuksela, M. Niskanen, Markus Turtinen
{"title":"Performance evaluation of image noise reduction computing on a mobile platform","authors":"J. Hannuksela, M. Niskanen, Markus Turtinen","doi":"10.1109/SAMOS.2015.7363694","DOIUrl":null,"url":null,"abstract":"Noise reduction is one of the most fundamental digital image processing challenges. On mobile devices, proper solutions for this task can significantly increase the output image quality making the use of a camera even more attractive for customers. The main challenge is that the processing time and energy efficiency must be optimized, since the response time and the battery life are critical factors for all mobile applications. To identify the solutions that maximizes the real-time performance, we compare several different implementations in terms of computational performance and energy efficiency. Specifically, we compare the OpenCL based design with multithreaded and NEON accelerated implementations and analyze them on the mobile platform. Based on the results of this study, the OpenCL framework provides a viable energy efficient alternative for implementing computer vision algorithms.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Noise reduction is one of the most fundamental digital image processing challenges. On mobile devices, proper solutions for this task can significantly increase the output image quality making the use of a camera even more attractive for customers. The main challenge is that the processing time and energy efficiency must be optimized, since the response time and the battery life are critical factors for all mobile applications. To identify the solutions that maximizes the real-time performance, we compare several different implementations in terms of computational performance and energy efficiency. Specifically, we compare the OpenCL based design with multithreaded and NEON accelerated implementations and analyze them on the mobile platform. Based on the results of this study, the OpenCL framework provides a viable energy efficient alternative for implementing computer vision algorithms.
基于移动平台的图像降噪计算性能评价
降噪是数字图像处理中最基本的挑战之一。在移动设备上,针对这项任务的适当解决方案可以显着提高输出图像质量,使相机的使用对客户更具吸引力。主要的挑战是必须优化处理时间和能源效率,因为响应时间和电池寿命是所有移动应用程序的关键因素。为了确定最大化实时性能的解决方案,我们从计算性能和能源效率方面比较了几种不同的实现。具体来说,我们将基于OpenCL的设计与多线程和NEON加速实现进行了比较,并在移动平台上进行了分析。基于本研究的结果,OpenCL框架为实现计算机视觉算法提供了一种可行的节能替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信