O. D. Matteo, J. Izaac, T. Bromley, Anthony Joseph Hayes, Christina Lee, M. Schuld, A. Sz'ava, Chase Roberts, N. Killoran
{"title":"Quantum Computing with Differentiable Quantum Transforms","authors":"O. D. Matteo, J. Izaac, T. Bromley, Anthony Joseph Hayes, Christina Lee, M. Schuld, A. Sz'ava, Chase Roberts, N. Killoran","doi":"10.1145/3592622","DOIUrl":null,"url":null,"abstract":"We present a framework for differentiable quantum transforms. Such transforms are metaprograms capable of manipulating quantum programs in a way that preserves their differentiability. We highlight their potential with a set of relevant examples across quantum computing (gradient computation, circuit compilation, and error mitigation), and implement them using the transform framework of PennyLane, a software library for differentiable quantum programming. In this framework, the transforms themselves are differentiable and can be parametrized and optimized, which opens up the possibility of improved quantum resource requirements across a spectrum of tasks.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present a framework for differentiable quantum transforms. Such transforms are metaprograms capable of manipulating quantum programs in a way that preserves their differentiability. We highlight their potential with a set of relevant examples across quantum computing (gradient computation, circuit compilation, and error mitigation), and implement them using the transform framework of PennyLane, a software library for differentiable quantum programming. In this framework, the transforms themselves are differentiable and can be parametrized and optimized, which opens up the possibility of improved quantum resource requirements across a spectrum of tasks.