R. Rangkuti, Aprinaldi Jasa Mantau, Vektor Dewanto, Novian Habibie, W. Jatmiko
{"title":"Structured support vector machine learning of conditional random fields","authors":"R. Rangkuti, Aprinaldi Jasa Mantau, Vektor Dewanto, Novian Habibie, W. Jatmiko","doi":"10.1109/ICACSIS.2016.7872799","DOIUrl":null,"url":null,"abstract":"This research aims to improve the capability of semantic segmentation through data perspective. This research proposed a parameterized Conditional Random Fields model and learns the model by using Structured Support Vector Machine (SSVM). The SSVM utilizes Hamming loss function for optimizing 1-slack Margin Rescaling formulation. The joint feature vector is derived from energy potentials. Variation of image size produces some missing values in the joint feature vector. This research shows that a zero padding can resolve the missing values. The experiment result shows that prediction with parameterized CRF yields 75.867% global accuracy (GA) and 22.1410 % averaged class accuracy (CA).","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This research aims to improve the capability of semantic segmentation through data perspective. This research proposed a parameterized Conditional Random Fields model and learns the model by using Structured Support Vector Machine (SSVM). The SSVM utilizes Hamming loss function for optimizing 1-slack Margin Rescaling formulation. The joint feature vector is derived from energy potentials. Variation of image size produces some missing values in the joint feature vector. This research shows that a zero padding can resolve the missing values. The experiment result shows that prediction with parameterized CRF yields 75.867% global accuracy (GA) and 22.1410 % averaged class accuracy (CA).