On interpolation of operators of weak type $$$(\phi_0, \psi_0, \phi_1, \psi_1)$$$ in Lorentz spaces in borderline cases

B. I. Peleshenko, T. N. Semirenko
{"title":"On interpolation of operators of weak type $$$(\\phi_0, \\psi_0, \\phi_1, \\psi_1)$$$ in Lorentz spaces in borderline cases","authors":"B. I. Peleshenko, T. N. Semirenko","doi":"10.15421/241809","DOIUrl":null,"url":null,"abstract":"The quaslinear operators of weak type $$$(\\phi_0, \\psi_0, \\phi_1, \\psi_1)$$$, analogs of the Calderon, Bennett operators in the case of concave and convex functions $$$\\phi_0(t)$$$, $$$\\psi_0(t)$$$, $$$\\phi_1(t)$$$, $$$\\psi_1(t)$$$ are considered. The theorems of interpolation of these operators from the Lorentz space $$$\\Lambda_{\\psi, b}(\\mathbb{R}^n)$$$ into the space $$$\\Lambda_{\\psi, a}(\\mathbb{R}^n)$$$ in cases when $$$0 < b \\leqslant a \\leqslant 1$$$ and relation of function $$$\\phi^{\\frac{1}{b}}(t)$$$ to one of functions $$$\\phi_1(t)$$$, $$$\\phi_2(t)$$$ is slowly varying function are proved.","PeriodicalId":339757,"journal":{"name":"Dnipro University Mathematics Bulletin","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dnipro University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/241809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quaslinear operators of weak type $$$(\phi_0, \psi_0, \phi_1, \psi_1)$$$, analogs of the Calderon, Bennett operators in the case of concave and convex functions $$$\phi_0(t)$$$, $$$\psi_0(t)$$$, $$$\phi_1(t)$$$, $$$\psi_1(t)$$$ are considered. The theorems of interpolation of these operators from the Lorentz space $$$\Lambda_{\psi, b}(\mathbb{R}^n)$$$ into the space $$$\Lambda_{\psi, a}(\mathbb{R}^n)$$$ in cases when $$$0 < b \leqslant a \leqslant 1$$$ and relation of function $$$\phi^{\frac{1}{b}}(t)$$$ to one of functions $$$\phi_1(t)$$$, $$$\phi_2(t)$$$ is slowly varying function are proved.
边界情况下洛伦兹空间中弱类型$$$(\phi_0, \psi_0, \phi_1, \psi_1)$$$的插值
考虑了弱类型$$$(\phi_0, \psi_0, \phi_1, \psi_1)$$$的拟线性算子$$$ $,以及凹、凸函数$$$\phi_0(t)$$$ $, $$$\psi_0(t)$$$, $$$\phi_1(t)$$$, $$$\psi_1(t)$$$ $。插值的定理,这些操作符从洛伦兹空间$ $ $ \ Lambda_ {\ psi, b} (\ mathbb {R} ^ n) $ $ $ $ $ $到空间\ Lambda_ {\ psi,} (\ mathbb {R} ^ n)在情况下$ $ $ $ $ $ 0 < b \ leqslant \ leqslant 1 $ $ $ $ $ $ \φ函数关系^{\压裂{1}{b}} (t)的$ $ $ $ $ $ \ phi_1 (t的函数 )$$$, $$$\ phi_2 (t) $ $ $是缓变函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信