DATA IMPUTATION OF MISSING VALUES FROM MARINE SYSTEMS SENSOR DATA. EVALUATION, VISUALISATION, AND SENSOR FAILURE DETECTION

C. Velasco-Gallego, I. Lazakis
{"title":"DATA IMPUTATION OF MISSING VALUES FROM MARINE SYSTEMS SENSOR DATA. EVALUATION, VISUALISATION, AND SENSOR FAILURE DETECTION","authors":"C. Velasco-Gallego, I. Lazakis","doi":"10.3940/rina.miet.2021.03","DOIUrl":null,"url":null,"abstract":"To enable Condition-Based maintenance, sensors need to be installed, and thus Internet of Ships (IoS) needs to be implemented. IoS presents several challenges, an example of which is the imputation of missing values. A data assessment imputation framework that is utilised to assess the accuracy of any imputation model is presented. To complement this study, a real-time imputation tool is proposed based on an open-source stack. A case study on a total of 4 machinery systems parameters obtained from sensors installed on a cargo vessel is presented to highlight the implementation of this framework. The multivariate imputation technique is performed by applying Kernel Ridge Regression (KRR). As the explanatory variables may also contain missing values, GA-ARIMA is utilised as the \nunivariate imputation technique. The case study results demonstrate the applicability of the suggested framework in the case of marine machinery systems.","PeriodicalId":243408,"journal":{"name":"Maritime Innovation and Emerging Technologies 2021","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maritime Innovation and Emerging Technologies 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3940/rina.miet.2021.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To enable Condition-Based maintenance, sensors need to be installed, and thus Internet of Ships (IoS) needs to be implemented. IoS presents several challenges, an example of which is the imputation of missing values. A data assessment imputation framework that is utilised to assess the accuracy of any imputation model is presented. To complement this study, a real-time imputation tool is proposed based on an open-source stack. A case study on a total of 4 machinery systems parameters obtained from sensors installed on a cargo vessel is presented to highlight the implementation of this framework. The multivariate imputation technique is performed by applying Kernel Ridge Regression (KRR). As the explanatory variables may also contain missing values, GA-ARIMA is utilised as the univariate imputation technique. The case study results demonstrate the applicability of the suggested framework in the case of marine machinery systems.
船舶系统传感器数据缺失值的数据输入。评估,可视化和传感器故障检测
为了实现基于状态的维护,需要安装传感器,因此需要实施船舶互联网(IoS)。IoS存在一些挑战,其中一个例子就是缺失值的输入。提出了一种用于评估任何估算模型准确性的数据评估估算框架。为了补充这一研究,提出了一种基于开源堆栈的实时插补工具。通过对安装在货船上的传感器获得的总共4个机械系统参数的案例研究,突出了该框架的实施。采用核岭回归(Kernel Ridge Regression, KRR)进行多变量插值。由于解释变量也可能包含缺失值,因此采用GA-ARIMA作为单变量imputation技术。实例研究结果表明,该框架在船舶机械系统中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信