Reconfigurable Hardware Architecture for Authenticated Key Agreement Protocol Over Binary Edwards Curve

N. Anandakumar, M. Das, S. K. Sanadhya, M. Hashmi
{"title":"Reconfigurable Hardware Architecture for Authenticated Key Agreement Protocol Over Binary Edwards Curve","authors":"N. Anandakumar, M. Das, S. K. Sanadhya, M. Hashmi","doi":"10.1145/3231743","DOIUrl":null,"url":null,"abstract":"In this article, we present a high-performance hardware architecture for Elliptic curve based (authenticated) key agreement protocol “Elliptic Curve Menezes, Qu and Vanstone” (ECMQV) over Binary Edwards Curve (BEC). We begin by analyzing inversion module on a 251-bit binary field. Subsequently, we present Field Programmable Gate Array (FPGA) implementations of the unified formula for computing elliptic curve point addition on BEC in affine and projective coordinates and investigate the relative performance of these two coordinates. Then, we implement the w-coordinate based differential addition formulae suitable for usage in Montgomery ladder. Next, we present a novel hardware architecture of BEC point multiplication using mixed w-coordinates of the Montgomery laddering algorithm and analyze it in terms of resistance to Simple Power Analysis (SPA) attack. In order to improve the performance, the architecture utilizes registers efficiently and uses efficient scheduling mechanisms for the BEC arithmetic implementations. Our implementation results show that the proposed architecture is resistant against SPA attack and yields a better performance when compared to the existing state-of-the-art BEC designs for computing point multiplication (PM). Finally, we present an FPGA design of ECMQV key agreement protocol using BEC defined over GF(2251). The execution of ECMQV protocol takes 66.47μs using 32,479 slices on Virtex-4 FPGA and 52.34μs using 15,988 slices on Virtex-5 FPGA. To the best of our knowledge, this is the first FPGA design of the ECMQV protocol using BEC.","PeriodicalId":162787,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3231743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this article, we present a high-performance hardware architecture for Elliptic curve based (authenticated) key agreement protocol “Elliptic Curve Menezes, Qu and Vanstone” (ECMQV) over Binary Edwards Curve (BEC). We begin by analyzing inversion module on a 251-bit binary field. Subsequently, we present Field Programmable Gate Array (FPGA) implementations of the unified formula for computing elliptic curve point addition on BEC in affine and projective coordinates and investigate the relative performance of these two coordinates. Then, we implement the w-coordinate based differential addition formulae suitable for usage in Montgomery ladder. Next, we present a novel hardware architecture of BEC point multiplication using mixed w-coordinates of the Montgomery laddering algorithm and analyze it in terms of resistance to Simple Power Analysis (SPA) attack. In order to improve the performance, the architecture utilizes registers efficiently and uses efficient scheduling mechanisms for the BEC arithmetic implementations. Our implementation results show that the proposed architecture is resistant against SPA attack and yields a better performance when compared to the existing state-of-the-art BEC designs for computing point multiplication (PM). Finally, we present an FPGA design of ECMQV key agreement protocol using BEC defined over GF(2251). The execution of ECMQV protocol takes 66.47μs using 32,479 slices on Virtex-4 FPGA and 52.34μs using 15,988 slices on Virtex-5 FPGA. To the best of our knowledge, this is the first FPGA design of the ECMQV protocol using BEC.
二进制爱德华兹曲线上认证密钥协议的可重构硬件架构
在本文中,我们提出了一种基于椭圆曲线的(认证)密钥协议“椭圆曲线Menezes, Qu和Vanstone”(ECMQV)基于二进制爱德华兹曲线(BEC)的高性能硬件架构。我们首先分析251位二进制域上的反转模块。随后,我们给出了在仿射和射影坐标系下计算椭圆曲线点加法的统一公式的现场可编程门阵列(FPGA)实现,并研究了这两个坐标系的相对性能。然后,我们实现了适用于蒙哥马利阶梯的基于w坐标的微分加法公式。接下来,我们提出了一种新的基于Montgomery阶梯算法的混合w坐标的BEC点乘法硬件架构,并从抗简单功率分析(SPA)攻击的角度对其进行了分析。为了提高性能,该体系结构有效地利用了寄存器,并在BEC算法实现中使用了高效的调度机制。我们的实现结果表明,与计算点乘法(PM)的现有最先进的BEC设计相比,所提出的体系结构具有抗SPA攻击的能力,并且具有更好的性能。最后,我们提出了一种基于GF(2251)定义的BEC的ECMQV密钥协议的FPGA设计。在Virtex-4和Virtex-5上,ECMQV协议在32479片和15988片上的执行时间分别为66.47μs和52.34μs。据我们所知,这是使用BEC的ECMQV协议的第一个FPGA设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信