Deep community detection based on memetic algorithm

Shanfeng Wang, Maoguo Gong, Bo Shen, Zhao Wang, Qing Cai, L. Jiao
{"title":"Deep community detection based on memetic algorithm","authors":"Shanfeng Wang, Maoguo Gong, Bo Shen, Zhao Wang, Qing Cai, L. Jiao","doi":"10.1109/CEC.2015.7256952","DOIUrl":null,"url":null,"abstract":"Deep community can be detected by removing noise nodes or edges from a network. A centrality measure, named local Fiedler vector centrality is proposed for deep community detection. Algorithms to optimize local Fiedler vector centrality are either with high computation complexity or difficult to find the optimal solution of local Fiedler vector centrality. In this paper, a novel memetic algorithm is proposed to maximize local Fiedler vector centrality for deep community detection. Experiments of our proposed memetic algorithm on four real world networks demonstrate that our algorithm can find optimal solution of local Fiedler vector centrality and is effective to discover deep communities.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7256952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Deep community can be detected by removing noise nodes or edges from a network. A centrality measure, named local Fiedler vector centrality is proposed for deep community detection. Algorithms to optimize local Fiedler vector centrality are either with high computation complexity or difficult to find the optimal solution of local Fiedler vector centrality. In this paper, a novel memetic algorithm is proposed to maximize local Fiedler vector centrality for deep community detection. Experiments of our proposed memetic algorithm on four real world networks demonstrate that our algorithm can find optimal solution of local Fiedler vector centrality and is effective to discover deep communities.
基于模因算法的深度社区检测
深度社区可以通过去除网络中的噪声节点或边缘来检测。提出了一种用于深度社团检测的中心性度量,称为局部费德勒向量中心性。局部Fiedler向量中心性优化算法要么计算复杂度高,要么难以找到局部Fiedler向量中心性的最优解。本文提出了一种新的模因算法,用于深度群体检测中最大化局部费德勒向量中心性。在4个真实网络上的实验表明,该算法能够找到局部Fiedler向量中心性的最优解,并能有效地发现深层社团。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信