Probabilistic OPF using linear fuzzy relation

I. S. Arneja, B. Venkatesh
{"title":"Probabilistic OPF using linear fuzzy relation","authors":"I. S. Arneja, B. Venkatesh","doi":"10.1109/ASSCC.2012.6523336","DOIUrl":null,"url":null,"abstract":"Optimal Power Flow (OPF) is a very important tool for planning and analysis of power systems. In the recent times, uncertain renewable energy is being integrated into power systems in a large scale. Appropriate modeling of renewables in OPF requires using stochastic models. Using stochastic models of renewables in OPF is numerically and algorithmically challenging due to the complexity of stochastic models and nonlinear nature of bus power balance equations. Hitherto, Monte Carlo Simulation technique and Cumulant technique have been proposed, but they are not computationally viable for large systems. In this paper, we propose the use of linear fuzzy relation technique to relate stochastic models of dependent variables of OPF formulation in terms of control variables that include power output of renewables. This fuzzy relation uses Hessian matrix of the LaGrangian of the OPF formulation at optimal solution point. The method is tested on a 6-bus system and results are reported. One can intuitively see that this method can be easily extended to larger systems.","PeriodicalId":341348,"journal":{"name":"2012 10th International Power & Energy Conference (IPEC)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Power & Energy Conference (IPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2012.6523336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Optimal Power Flow (OPF) is a very important tool for planning and analysis of power systems. In the recent times, uncertain renewable energy is being integrated into power systems in a large scale. Appropriate modeling of renewables in OPF requires using stochastic models. Using stochastic models of renewables in OPF is numerically and algorithmically challenging due to the complexity of stochastic models and nonlinear nature of bus power balance equations. Hitherto, Monte Carlo Simulation technique and Cumulant technique have been proposed, but they are not computationally viable for large systems. In this paper, we propose the use of linear fuzzy relation technique to relate stochastic models of dependent variables of OPF formulation in terms of control variables that include power output of renewables. This fuzzy relation uses Hessian matrix of the LaGrangian of the OPF formulation at optimal solution point. The method is tested on a 6-bus system and results are reported. One can intuitively see that this method can be easily extended to larger systems.
基于线性模糊关系的概率OPF
最优潮流(OPF)是电力系统规划和分析的重要工具。近年来,不确定的可再生能源正被大规模地纳入电力系统。OPF中可再生能源的适当建模需要使用随机模型。由于随机模型的复杂性和母线功率平衡方程的非线性性质,在OPF中使用可再生能源的随机模型在数值和算法上都具有挑战性。迄今为止,已经提出了蒙特卡罗模拟技术和累积量技术,但它们在计算上并不适用于大型系统。在本文中,我们建议使用线性模糊关系技术将OPF公式中因变量的随机模型与包括可再生能源功率输出在内的控制变量联系起来。该模糊关系在最优解点处使用了OPF公式拉格朗日的Hessian矩阵。该方法在6总线系统上进行了测试,并给出了测试结果。人们可以直观地看到,这种方法可以很容易地扩展到更大的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信