PRONÓSTICO DE LAS CONCENTRACIONES DE MATERIAL PARTICULADO EN EL AIRE (PM10) UTILIZANDO REDES NEURONALES ARTIFICIALES: CASO ESTUDIO EN EL DISTRITO DE ATE, LIMA

Jhojan Pool Rojas Quincho, Elvis Anthony Medina Dionicio
{"title":"PRONÓSTICO DE LAS CONCENTRACIONES DE MATERIAL PARTICULADO EN EL AIRE (PM10) UTILIZANDO REDES NEURONALES ARTIFICIALES: CASO ESTUDIO EN EL DISTRITO DE ATE, LIMA","authors":"Jhojan Pool Rojas Quincho, Elvis Anthony Medina Dionicio","doi":"10.37761/rsqp.v88i3.402","DOIUrl":null,"url":null,"abstract":"La presente investigación tuvo como objetivo evaluar el desempeño del modelo de Redes Neuronales Artificiales (RNA) para pronosticar las concentraciones de PM10 en el aire, para lo cual se hizo un caso estudio para el distrito de Ate, Lima. Para ello se desarrolló distintas arquitecturas de RNA usando como datos de entrada a los registros de contaminantes del aire y variables meteorológicas obtenidas de la Estación de Monitoreo de la Calidad del Aire “ATE” y datos simulados del modelo WRF-CHEM. Las diferentes arquitecturas de RNA pasaron por un proceso de entrenamiento y verificación, y su desempeño se evaluó medianteel Error Cuadrático Medio (ECM), la precisión (BIAS) y el coeficiente de determinación (R2). Se determinó que la arquitectura que tiene un mejor desempeño tuvo 19 neuronas en la capa oculta, con valores de 0,0230 para el ECM, 0,5308 para la BIAS y 0,823 para el R2, asimismo, esta puede brindar pronósticos hasta con 6 horas de antelación. Este estudio puede contribuir a la implementación de Sistemas de Alertas Tempranas (SAT) sobre posibles incrementos en el aire de las concentraciones de PM10.","PeriodicalId":261965,"journal":{"name":"Revista de la Sociedad Química del Perú","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Sociedad Química del Perú","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37761/rsqp.v88i3.402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

La presente investigación tuvo como objetivo evaluar el desempeño del modelo de Redes Neuronales Artificiales (RNA) para pronosticar las concentraciones de PM10 en el aire, para lo cual se hizo un caso estudio para el distrito de Ate, Lima. Para ello se desarrolló distintas arquitecturas de RNA usando como datos de entrada a los registros de contaminantes del aire y variables meteorológicas obtenidas de la Estación de Monitoreo de la Calidad del Aire “ATE” y datos simulados del modelo WRF-CHEM. Las diferentes arquitecturas de RNA pasaron por un proceso de entrenamiento y verificación, y su desempeño se evaluó medianteel Error Cuadrático Medio (ECM), la precisión (BIAS) y el coeficiente de determinación (R2). Se determinó que la arquitectura que tiene un mejor desempeño tuvo 19 neuronas en la capa oculta, con valores de 0,0230 para el ECM, 0,5308 para la BIAS y 0,823 para el R2, asimismo, esta puede brindar pronósticos hasta con 6 horas de antelación. Este estudio puede contribuir a la implementación de Sistemas de Alertas Tempranas (SAT) sobre posibles incrementos en el aire de las concentraciones de PM10.
利用人工神经网络预测空气中颗粒物(PM10)浓度:利马ATE地区的案例研究
本研究旨在评估人工神经网络(RNA)模型在预测空气中PM10浓度方面的性能,并以利马阿特地区为例进行研究。为此,利用空气质量监测站“ATE”获得的空气污染物记录和气象变量以及WRF-CHEM模型的模拟数据作为输入数据,开发了不同的RNA架构。不同的RNA架构经过训练和验证,并通过均方误差(ECM)、精度(偏差)和决定系数(R2)来评估它们的性能。结果表明,表现最好的结构在隐层有19个神经元,ECM值为0.0230,BIAS值为0.5308,R2值为0.823,可以提前6小时提供预测。这项研究可能有助于实施空气中PM10浓度可能增加的早期预警系统(SAT)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信