Aircraft Detection by Deep Belief Nets

Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chunhong Pan
{"title":"Aircraft Detection by Deep Belief Nets","authors":"Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chunhong Pan","doi":"10.1109/ACPR.2013.5","DOIUrl":null,"url":null,"abstract":"Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In this paper, an effective aircraft detection method is proposed which exactly locates the object by outputting its geometric center, orientation, position. To reduce the influence of background, multi-images including gradient image and gray thresholding images of the object were input to a Deep Belief Net (DBN), which was pre-trained first to learn features and later fine-tuned by back-propagation to yield a robust detector. Experimental results show that DBNs can detecte the tiny blurred aircrafts correctly in many difficult airport images, DBNs outperform the traditional Feature Classifier methods in robustness and accuracy, and the multi-images help improve the detection precision of DBN than using only single-image.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Aircraft detection is a difficult task in high-resolution remote sensing images, due to the variable sizes, colors, orientations and complex backgrounds. In this paper, an effective aircraft detection method is proposed which exactly locates the object by outputting its geometric center, orientation, position. To reduce the influence of background, multi-images including gradient image and gray thresholding images of the object were input to a Deep Belief Net (DBN), which was pre-trained first to learn features and later fine-tuned by back-propagation to yield a robust detector. Experimental results show that DBNs can detecte the tiny blurred aircrafts correctly in many difficult airport images, DBNs outperform the traditional Feature Classifier methods in robustness and accuracy, and the multi-images help improve the detection precision of DBN than using only single-image.
基于深度信念网的飞机检测
在高分辨率遥感图像中,由于图像的大小、颜色、方向和背景复杂,飞机检测是一项艰巨的任务。本文提出了一种有效的飞机检测方法,通过输出目标的几何中心、方位、位置来精确定位目标。为了减少背景的影响,将包括梯度图像和灰度阈值图像在内的多幅图像输入到深度信念网络(DBN)中,该网络首先进行预训练以学习特征,然后通过反向传播进行微调以产生鲁棒检测器。实验结果表明,DBN能够在多幅难度较大的机场图像中正确检测出微小的模糊飞机,在鲁棒性和准确率上都优于传统的特征分类器方法,多幅图像比单幅图像更有助于提高DBN的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信