Analysis of Sentiments in Movie Reviews using Supervised Machine Learning Technique

I. Regina, P. Sengottuvelan
{"title":"Analysis of Sentiments in Movie Reviews using Supervised Machine Learning Technique","authors":"I. Regina, P. Sengottuvelan","doi":"10.1109/ICCCT53315.2021.9711848","DOIUrl":null,"url":null,"abstract":"Nearly all high-flying branches of machine learning technique is sentiment analysis. A mechanism text summarization process is used determine to decide that document's author's intent. This article proposes to implement and test a system for the automated sentiment analysis of film reviews. In comparison to other studies that foe us solely on sentimental orientation (Positive versus negative), the proposed approach conducts fine-grained research to evaluate both the viewer's sentimental orientation and sentimental intensity against different facets of the film. This article presents an evaluation of the outcome achieved by applying Variational Forest, XGBoost, Linear Regression, Naive Bayes (NB), Maximum Entropy, and Vector Support Machine (SVM). The experimentation shows that by providing lofty dynamic factors to the film, acting, and storyline facets of a film, we achieved the maximum accurateness in the study of the film reviews.","PeriodicalId":162171,"journal":{"name":"2021 4th International Conference on Computing and Communications Technologies (ICCCT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Computing and Communications Technologies (ICCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT53315.2021.9711848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nearly all high-flying branches of machine learning technique is sentiment analysis. A mechanism text summarization process is used determine to decide that document's author's intent. This article proposes to implement and test a system for the automated sentiment analysis of film reviews. In comparison to other studies that foe us solely on sentimental orientation (Positive versus negative), the proposed approach conducts fine-grained research to evaluate both the viewer's sentimental orientation and sentimental intensity against different facets of the film. This article presents an evaluation of the outcome achieved by applying Variational Forest, XGBoost, Linear Regression, Naive Bayes (NB), Maximum Entropy, and Vector Support Machine (SVM). The experimentation shows that by providing lofty dynamic factors to the film, acting, and storyline facets of a film, we achieved the maximum accurateness in the study of the film reviews.
使用监督式机器学习技术分析电影评论中的情绪
几乎所有机器学习技术的热门分支都是情感分析。使用文本摘要过程机制来确定文档作者的意图。本文提出实现并测试一个电影评论情感自动分析系统。与其他仅针对情感取向(积极与消极)的研究相比,本文提出的方法进行了细致的研究,以评估观众对电影不同方面的情感取向和情感强度。本文介绍了应用变分森林、XGBoost、线性回归、朴素贝叶斯(NB)、最大熵和向量支持机(SVM)所取得的结果的评估。实验表明,通过为电影的电影,表演和故事情节方面提供崇高的动态因素,我们在电影评论研究中达到了最大的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信