American Sign Language Interpreter: A Bridge Between the Two Worlds

K. Sood, Bhargav Navdiya, Anthony Hernandez
{"title":"American Sign Language Interpreter: A Bridge Between the Two Worlds","authors":"K. Sood, Bhargav Navdiya, Anthony Hernandez","doi":"10.1109/AISC56616.2023.10085066","DOIUrl":null,"url":null,"abstract":"American Sign Language (ASL) is the third most commonly used language after English and Spanish. In this work, we build an image classification modeling technique for ASL to abridge the gap between native ASL speakers including children and others. This paper focuses on providing a sign language recognition system using machine learning. We use four conventional machine learning techniques: K-nearest neighbor, Naive Bayes, Logistic Regression, and Random Forest to detect the alphabets from the images made available using an existing dataset and a new dataset that we generate for this work. Our technique identifies images based on the grayscale values, to identify the same sign in different environments such as images captured in different illuminated environments or hand signs placed at different places compared to the image in the dataset, or hand signs with diverse backgrounds. We use an existing dataset and a real-world dataset that we create independently by generating images using an HP webcam using a computer vision library. We use supervised machine learning and train the classifiers using the labeled image data to predict the ASL signed alphabet in the new image. Our analysis indicates that K-Nearest Neighbor performs best with both datasets achieving up to 99% accuracy.","PeriodicalId":408520,"journal":{"name":"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISC56616.2023.10085066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

American Sign Language (ASL) is the third most commonly used language after English and Spanish. In this work, we build an image classification modeling technique for ASL to abridge the gap between native ASL speakers including children and others. This paper focuses on providing a sign language recognition system using machine learning. We use four conventional machine learning techniques: K-nearest neighbor, Naive Bayes, Logistic Regression, and Random Forest to detect the alphabets from the images made available using an existing dataset and a new dataset that we generate for this work. Our technique identifies images based on the grayscale values, to identify the same sign in different environments such as images captured in different illuminated environments or hand signs placed at different places compared to the image in the dataset, or hand signs with diverse backgrounds. We use an existing dataset and a real-world dataset that we create independently by generating images using an HP webcam using a computer vision library. We use supervised machine learning and train the classifiers using the labeled image data to predict the ASL signed alphabet in the new image. Our analysis indicates that K-Nearest Neighbor performs best with both datasets achieving up to 99% accuracy.
美国手语翻译:两个世界之间的桥梁
美国手语(ASL)是仅次于英语和西班牙语的第三大常用语言。在这项工作中,我们建立了一种针对美国手语的图像分类建模技术,以弥合美国手语母语使用者(包括儿童)和其他人之间的差距。本文的重点是提供一个使用机器学习的手语识别系统。我们使用四种传统的机器学习技术:k近邻、朴素贝叶斯、逻辑回归和随机森林来检测使用现有数据集和我们为这项工作生成的新数据集提供的图像中的字母。我们的技术基于灰度值识别图像,以识别不同环境中的相同标志,例如在不同照明环境中捕获的图像或与数据集中图像相比放置在不同位置的手势,或者具有不同背景的手势。我们使用一个现有的数据集和一个真实世界的数据集,我们通过使用计算机视觉库使用惠普网络摄像头生成图像来独立创建数据集。我们使用有监督的机器学习,并使用标记的图像数据训练分类器来预测新图像中的ASL手语字母。我们的分析表明,k近邻算法在两个数据集的准确率都达到99%的情况下表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信