An Intelligent Agent Based Approach for Intrusion Detection and Prevention in Adhoc Networks

S. Veeraraghavan, S. Bose, K. Anand, A. Kannan
{"title":"An Intelligent Agent Based Approach for Intrusion Detection and Prevention in Adhoc Networks","authors":"S. Veeraraghavan, S. Bose, K. Anand, A. Kannan","doi":"10.1109/ICSCN.2007.350658","DOIUrl":null,"url":null,"abstract":"This paper describes about an intelligent agent based intrusion detection and prevention system for mobile ad hoc network. This system collects data from application layer and network layer and classifies them using the log file data collected from these layers and local anomalies are computed using local agents finally it is sent to a global agent for integration. The local agents monitor the two layers of the network to determine the correlation among the observed anomalous patterns, reporting such abnormal behavior to the administrator for taking possible action. Our simulation results obtained after integration shows that it is possible to obtain high intrusion-detection rates (99.2%) and low false-alarm rates","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper describes about an intelligent agent based intrusion detection and prevention system for mobile ad hoc network. This system collects data from application layer and network layer and classifies them using the log file data collected from these layers and local anomalies are computed using local agents finally it is sent to a global agent for integration. The local agents monitor the two layers of the network to determine the correlation among the observed anomalous patterns, reporting such abnormal behavior to the administrator for taking possible action. Our simulation results obtained after integration shows that it is possible to obtain high intrusion-detection rates (99.2%) and low false-alarm rates
一种基于智能代理的自组织网络入侵检测与防御方法
介绍了一种基于智能代理的移动自组网入侵检测与防御系统。该系统从应用层和网络层收集数据,并利用日志文件对数据进行分类。从应用层和网络层收集数据,通过本地代理计算局部异常,最后发送给全局代理进行集成。本地代理监视网络的两层,以确定观察到的异常模式之间的相关性,并将此类异常行为报告给管理员,以便管理员采取可能的操作。集成后的仿真结果表明,可以获得较高的入侵检测率(99.2%)和较低的误报率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信