{"title":"Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting","authors":"Ye Ren, Xueheng Qiu, P. N. Suganthan","doi":"10.1109/CIEL.2014.7015741","DOIUrl":null,"url":null,"abstract":"Wind speed forecasting is a popular research direction in renewable energy and computational intelligence. Ensemble forecasting and hybrid forecasting models are widely used in wind speed forecasting. This paper proposes a novel ensemble forecasting model by combining Empirical mode decomposition (EMD), Adaptive boosting (AdaBoost) and Backpropagation Neural Network (BPNN) together. The proposed model is compared with six benchmark models: persistent, AdaBoost with regression tree, BPNN, AdaBoost-BPNN, EMD-BPNN and EMD-AdaBoost with regression tree. The comparisons undergoes several statistical tests and the tests show that the proposed EMD-AdaBoost- BPNN model outperformed the other models significantly. The forecasting error of the proposed model also shows significant randomness.","PeriodicalId":229765,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEL.2014.7015741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Wind speed forecasting is a popular research direction in renewable energy and computational intelligence. Ensemble forecasting and hybrid forecasting models are widely used in wind speed forecasting. This paper proposes a novel ensemble forecasting model by combining Empirical mode decomposition (EMD), Adaptive boosting (AdaBoost) and Backpropagation Neural Network (BPNN) together. The proposed model is compared with six benchmark models: persistent, AdaBoost with regression tree, BPNN, AdaBoost-BPNN, EMD-BPNN and EMD-AdaBoost with regression tree. The comparisons undergoes several statistical tests and the tests show that the proposed EMD-AdaBoost- BPNN model outperformed the other models significantly. The forecasting error of the proposed model also shows significant randomness.