Parallel Statistical Model Checking for Safety Verification in Smart Grids

Toni Mancini, F. Mari, I. Melatti, Ivano Salvo, E. Tronci, J. Gruber, B. Hayes, M. Prodanović, Lars Elmegaard
{"title":"Parallel Statistical Model Checking for Safety Verification in Smart Grids","authors":"Toni Mancini, F. Mari, I. Melatti, Ivano Salvo, E. Tronci, J. Gruber, B. Hayes, M. Prodanović, Lars Elmegaard","doi":"10.1109/SmartGridComm.2018.8587416","DOIUrl":null,"url":null,"abstract":"By using small computing devices deployed at user premises, Autonomous Demand Response (ADR) adapts users electricity consumption to given time-dependent electricity tariffs. This allows end-users to save on their electricity bill and Distribution System Operators to optimise (through suitable time-dependent tariffs) management of the electric grid by avoiding demand peaks. Unfortunately, even with ADR, users power consumption may deviate from the expected (minimum cost) one, e.g., because ADR devices fail to correctly forecast energy needs at user premises. As a result, the aggregated power demand may present undesirable peaks. In this paper we address such a problem by presenting methods and a software tool (APD-Analyser) implementing them, enabling Distribution System Operators to effectively verify that a given time-dependent electricity tariff achieves the desired goals even when end-users deviate from their expected behaviour. We show feasibility of the proposed approach through a realistic scenario from a medium voltage Danish distribution network.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

By using small computing devices deployed at user premises, Autonomous Demand Response (ADR) adapts users electricity consumption to given time-dependent electricity tariffs. This allows end-users to save on their electricity bill and Distribution System Operators to optimise (through suitable time-dependent tariffs) management of the electric grid by avoiding demand peaks. Unfortunately, even with ADR, users power consumption may deviate from the expected (minimum cost) one, e.g., because ADR devices fail to correctly forecast energy needs at user premises. As a result, the aggregated power demand may present undesirable peaks. In this paper we address such a problem by presenting methods and a software tool (APD-Analyser) implementing them, enabling Distribution System Operators to effectively verify that a given time-dependent electricity tariff achieves the desired goals even when end-users deviate from their expected behaviour. We show feasibility of the proposed approach through a realistic scenario from a medium voltage Danish distribution network.
智能电网安全验证的并行统计模型检验
通过使用部署在用户场所的小型计算设备,自主需求响应(ADR)根据给定的与时间相关的电价调整用户的用电量。这使得最终用户可以节省电费,配电系统运营商可以通过避免需求高峰来优化电网管理(通过适当的分时电价)。不幸的是,即使使用ADR,用户的电力消耗也可能偏离预期(最低成本),例如,因为ADR设备无法正确预测用户场所的能源需求。因此,总功率需求可能出现不希望出现的峰值。在本文中,我们通过提出方法和软件工具(APD-Analyser)来解决这样的问题,使配电系统运营商能够有效地验证给定的时间相关电价是否达到预期目标,即使最终用户偏离了他们的预期行为。我们通过丹麦中压配电网的一个现实场景展示了所提出方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信