Synthesizing EEG Signals from Speech Signals Using BCI's with EKF-Based Training

Guguloth Sagar, H. Parthasarathy, Vijyant Agarwal, Vijay Upreti
{"title":"Synthesizing EEG Signals from Speech Signals Using BCI's with EKF-Based Training","authors":"Guguloth Sagar, H. Parthasarathy, Vijyant Agarwal, Vijay Upreti","doi":"10.1109/ICIERA53202.2021.9726748","DOIUrl":null,"url":null,"abstract":"A nonlinear oscillator differential equation model for EEG signals is linearized and discretized. The unknown parameters of this model are estimated using the EKF from noisy EEG signals. Likewise, the parameters of a linear difference equation model for speech are estimated using the EKF from noisy speech measurements. Based on the hypothesis that EEG and speech signals are correlated, a linear regression model that relates speech parameters to EEG parameters is proposed. By substituting this linear regression model into the speech differential equation, the EEG parameters for a fresh person are estimated from the speech signal alone using the EKF. This set up compares the generation of EEG data from speech data using a computer with training based on available EEG and speech signals from the BCI.","PeriodicalId":220461,"journal":{"name":"2021 International Conference on Industrial Electronics Research and Applications (ICIERA)","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Industrial Electronics Research and Applications (ICIERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIERA53202.2021.9726748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A nonlinear oscillator differential equation model for EEG signals is linearized and discretized. The unknown parameters of this model are estimated using the EKF from noisy EEG signals. Likewise, the parameters of a linear difference equation model for speech are estimated using the EKF from noisy speech measurements. Based on the hypothesis that EEG and speech signals are correlated, a linear regression model that relates speech parameters to EEG parameters is proposed. By substituting this linear regression model into the speech differential equation, the EEG parameters for a fresh person are estimated from the speech signal alone using the EKF. This set up compares the generation of EEG data from speech data using a computer with training based on available EEG and speech signals from the BCI.
基于ekf训练的脑机接口语音合成脑电信号
对脑电信号的非线性振荡器微分方程模型进行了线性化和离散化处理。利用带噪脑电信号的EKF估计模型的未知参数。同样地,语音的线性差分方程模型的参数是使用噪声语音测量的EKF来估计的。基于脑电和语音信号相互关联的假设,提出了语音参数与脑电参数之间的线性回归模型。将该线性回归模型代入语音微分方程,利用EKF从语音信号单独估计一个新人的脑电参数。该设置将使用计算机从语音数据生成的脑电图数据与基于来自BCI的可用脑电图和语音信号的训练进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信