Visual saliency estimation for video

Matthew Oakes, G. Abhayaratne
{"title":"Visual saliency estimation for video","authors":"Matthew Oakes, G. Abhayaratne","doi":"10.1109/WIAMIS.2012.6226751","DOIUrl":null,"url":null,"abstract":"The most eye catching regions within an image or video can be captured by exploiting characteristics within the human visual system. In this paper we propose a novel method for modeling the visual saliency information in a video sequence. The proposed method incorporates wavelet decomposition and the modeling of the human visual system to capture spatiotemporal saliency information. A unique approach to capture and combine salient motion data with spatial intensity and orientation contrasts in the sequence, is presented. The proposed method shows a superior performance compared to the state-of-the-art existing methods. The fast algorithm can be simply implemented and is useful for many wavelet based applications such as watermarking, compression and fusion.","PeriodicalId":346777,"journal":{"name":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2012.6226751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The most eye catching regions within an image or video can be captured by exploiting characteristics within the human visual system. In this paper we propose a novel method for modeling the visual saliency information in a video sequence. The proposed method incorporates wavelet decomposition and the modeling of the human visual system to capture spatiotemporal saliency information. A unique approach to capture and combine salient motion data with spatial intensity and orientation contrasts in the sequence, is presented. The proposed method shows a superior performance compared to the state-of-the-art existing methods. The fast algorithm can be simply implemented and is useful for many wavelet based applications such as watermarking, compression and fusion.
视频的视觉显著性估计
图像或视频中最引人注目的区域可以通过利用人类视觉系统的特性来捕获。本文提出了一种新的视频序列视觉显著性信息建模方法。该方法结合小波分解和人类视觉系统建模来捕获时空显著性信息。提出了一种独特的方法来捕获和结合突出运动数据与空间强度和方向对比的序列。与现有方法相比,该方法具有更好的性能。该快速算法实现简单,可用于许多基于小波的应用,如水印、压缩和融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信