The outlier process (picture processing)

D. Geiger, R.A.M. Pereira
{"title":"The outlier process (picture processing)","authors":"D. Geiger, R.A.M. Pereira","doi":"10.1109/NNSP.1991.239535","DOIUrl":null,"url":null,"abstract":"The authors discuss the problem of detecting outliers from a set of surface data. They start from the Bayes approach and the assumption that surfaces are piecewise smooth and corrupted by a combination of white Gaussian and salt and pepper noise. They show that such surfaces can be modelled by introducing an outlier process that is capable of 'throwing away' data. They make use of mean field techniques to finally obtain a deterministic network. The experimental results with real images support the model.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The authors discuss the problem of detecting outliers from a set of surface data. They start from the Bayes approach and the assumption that surfaces are piecewise smooth and corrupted by a combination of white Gaussian and salt and pepper noise. They show that such surfaces can be modelled by introducing an outlier process that is capable of 'throwing away' data. They make use of mean field techniques to finally obtain a deterministic network. The experimental results with real images support the model.<>
离群值处理(图像处理)
作者讨论了从一组地表数据中检测异常值的问题。他们从贝叶斯方法开始,并假设表面是分段光滑的,并且被白高斯噪声和盐胡椒噪声的组合所破坏。他们表明,这样的表面可以通过引入一个能够“丢弃”数据的离群过程来建模。他们利用平均场技术最终得到一个确定性网络。真实图像的实验结果支持该模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信