Direction finding by complex L1-principal-component analysis

N. Tsagkarakis, Panos P. Markopoulos, D. Pados
{"title":"Direction finding by complex L1-principal-component analysis","authors":"N. Tsagkarakis, Panos P. Markopoulos, D. Pados","doi":"10.1109/SPAWC.2015.7227083","DOIUrl":null,"url":null,"abstract":"In the light of recent developments in optimal real L1-norm principal-component analysis (PCA), we provide the first algorithm in the literature to carry out L1-PCA of complex-valued data. Then, we use this algorithm to develop a novel subspace-based direction-of-arrival (DoA) estimation method that is resistant to faulty measurements or jamming. As demonstrated by numerical experiments, the proposed algorithm is as effective as state-of-the-art L2-norm methods in clean-data environments and significantly superior when operating on corrupted data.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"206 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In the light of recent developments in optimal real L1-norm principal-component analysis (PCA), we provide the first algorithm in the literature to carry out L1-PCA of complex-valued data. Then, we use this algorithm to develop a novel subspace-based direction-of-arrival (DoA) estimation method that is resistant to faulty measurements or jamming. As demonstrated by numerical experiments, the proposed algorithm is as effective as state-of-the-art L2-norm methods in clean-data environments and significantly superior when operating on corrupted data.
复l1 -主成分分析测向
鉴于最优实l1范数主成分分析(PCA)的最新发展,我们提出了文献中第一个对复值数据进行l1主成分分析的算法。然后,我们利用该算法开发了一种新的基于子空间的到达方向(DoA)估计方法,该方法可以抵抗错误测量或干扰。数值实验表明,该算法在干净数据环境下与最先进的l2 -范数方法一样有效,在处理损坏数据时明显优于最先进的l2 -范数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信