Enhancement of CNN-based 2048 Player with Monte-Carlo Tree Search

Shota Watanabe, Kiminori Matsuzaki
{"title":"Enhancement of CNN-based 2048 Player with Monte-Carlo Tree Search","authors":"Shota Watanabe, Kiminori Matsuzaki","doi":"10.1109/TAAI57707.2022.00018","DOIUrl":null,"url":null,"abstract":"In this study, we developed computer players for a single-player stochastic game 2048 using an existing neural-network evaluation function and a version of Monte-Carlo tree search. We applied the Monte-Carlo softmax search (MCSS) algorithm, with some modifications in order to adapt it to the stochastic game, and designed six methods of controlling the search algorithm. We evaluated the MCSS players in an exhaustive manner and also conducted longer experiments for two MCSS players by changing the number of simulations per move. Our MCSS player achieved an average score of 533 542 under the limit of 2000 simulations per move. This result was better than Expectimax players that used the same evaluation function.","PeriodicalId":111620,"journal":{"name":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI57707.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we developed computer players for a single-player stochastic game 2048 using an existing neural-network evaluation function and a version of Monte-Carlo tree search. We applied the Monte-Carlo softmax search (MCSS) algorithm, with some modifications in order to adapt it to the stochastic game, and designed six methods of controlling the search algorithm. We evaluated the MCSS players in an exhaustive manner and also conducted longer experiments for two MCSS players by changing the number of simulations per move. Our MCSS player achieved an average score of 533 542 under the limit of 2000 simulations per move. This result was better than Expectimax players that used the same evaluation function.
用蒙特卡罗树搜索增强基于cnn的2048播放器
在这项研究中,我们使用现有的神经网络评估函数和蒙特卡罗树搜索版本开发了单人随机博弈2048的计算机玩家。采用蒙特卡罗软最大搜索算法,并对其进行了一些修改,使其适应随机博弈,设计了6种控制搜索算法的方法。我们以详尽的方式评估了MCSS玩家,并通过改变每次移动的模拟次数,对两个MCSS玩家进行了更长的实验。我们的MCSS玩家在每次移动2000次模拟的限制下获得了533 542的平均分数。该结果优于使用相同评价函数的Expectimax玩家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信