Genesis, Identification and Bayes Estimation of the Inverse Power Model for Insulation Reliability Assessment

E. Chiodo, L. D. di Noia, F. Mottola, G. Mazzanti
{"title":"Genesis, Identification and Bayes Estimation of the Inverse Power Model for Insulation Reliability Assessment","authors":"E. Chiodo, L. D. di Noia, F. Mottola, G. Mazzanti","doi":"10.1109/CEIDP.2018.8544863","DOIUrl":null,"url":null,"abstract":"Physical/mathematical laws describing electrical insulation aging play a key role for the reliability model identification of the insulation itself. This holds for the popular Inverse Power Model, too. The paper first discusses the deduction of the Inverse Power Model from reasonable physical and mathematical models of ageing, described via proper characterization of the random variables or the stochastic processes involved. Then, some analytical aids are given in order to perform its identification and Bayes Estimation, also by means of numerical applications with reference to in-service electrical failure data.","PeriodicalId":377544,"journal":{"name":"2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2018.8544863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physical/mathematical laws describing electrical insulation aging play a key role for the reliability model identification of the insulation itself. This holds for the popular Inverse Power Model, too. The paper first discusses the deduction of the Inverse Power Model from reasonable physical and mathematical models of ageing, described via proper characterization of the random variables or the stochastic processes involved. Then, some analytical aids are given in order to perform its identification and Bayes Estimation, also by means of numerical applications with reference to in-service electrical failure data.
绝缘可靠性评估逆功率模型的产生、辨识与贝叶斯估计
描述电绝缘老化的物理/数学规律对绝缘本身的可靠性模型识别起着关键作用。这也适用于流行的逆幂模型。本文首先讨论了从合理的老化物理和数学模型中推导出逆功率模型,通过适当地描述随机变量或所涉及的随机过程。然后,结合在役电气故障数据,给出了一些辅助分析方法来进行故障识别和贝叶斯估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信