Vedic Multiplier and Wallace Tree Adders Based Optimised Processing Element Unit for CNN on FPGA

Dhanya Ok, Y. Premson, R. Sakthivel
{"title":"Vedic Multiplier and Wallace Tree Adders Based Optimised Processing Element Unit for CNN on FPGA","authors":"Dhanya Ok, Y. Premson, R. Sakthivel","doi":"10.1109/IPRECON55716.2022.10059532","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) have been effectively used for a variety of tasks, comprising image classification, detection and speech processing. CNNs possess computationally demanding methods and currently necessitates specialised hardware. Thus, hardware optimization for effective CNN accelerator design continues to be a difficult task. Most of the intensive computation on a CNN accelerator design is carried out by the processing element (PE). This article offers a novel processing element design based on Vedic multipliers and Wallace Tree adders as a substitute for hardware implementation. The proposed design achieves significant savings in hardware resources and power. The proposed Vedic multiplier results in minimum delay.","PeriodicalId":407222,"journal":{"name":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Power and Renewable Energy Conference (IPRECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPRECON55716.2022.10059532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Networks (CNNs) have been effectively used for a variety of tasks, comprising image classification, detection and speech processing. CNNs possess computationally demanding methods and currently necessitates specialised hardware. Thus, hardware optimization for effective CNN accelerator design continues to be a difficult task. Most of the intensive computation on a CNN accelerator design is carried out by the processing element (PE). This article offers a novel processing element design based on Vedic multipliers and Wallace Tree adders as a substitute for hardware implementation. The proposed design achieves significant savings in hardware resources and power. The proposed Vedic multiplier results in minimum delay.
基于FPGA的CNN优化处理单元Vedic乘法器和Wallace树加法器
卷积神经网络(cnn)已被有效地用于各种任务,包括图像分类、检测和语音处理。cnn拥有计算要求很高的方法,目前需要专门的硬件。因此,有效的CNN加速器设计的硬件优化仍然是一项艰巨的任务。在CNN加速器设计中,大部分的密集计算是由处理单元(PE)完成的。本文提出了一种新的基于吠陀乘法器和华莱士树加法器的处理元素设计,以替代硬件实现。所提出的设计在硬件资源和功耗方面实现了显著的节省。所建议的吠陀乘数法使延迟最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信