Cutting-Plane Training of Non-associative Markov Network for 3D Point Cloud Segmentation

Roman Shapovalov, A. Velizhev
{"title":"Cutting-Plane Training of Non-associative Markov Network for 3D Point Cloud Segmentation","authors":"Roman Shapovalov, A. Velizhev","doi":"10.1109/3DIMPVT.2011.10","DOIUrl":null,"url":null,"abstract":"We address the problem of object class segmentation of 3D point clouds. Each point of a cloud should be assigned a class label determined by the category of the object it belongs to. Non-associative Markov networks have been applied to this task recently. Indeed, they impose more flexible constraints on segmentation results in contrast to the associative ones. We show how to train non-associative Markov networks in a principled manner using the structured Support Vector Machine (SVM) formalism. In contrast to prior work we use the kernel trick which makes our method one of the first non-linear methods for max-margin Markov Random Field training applied to 3D point cloud segmentation. We evaluate our method on airborne and terrestrial laser scans. In comparison to the other non-linear training techniques our method shows higher accuracy.","PeriodicalId":330003,"journal":{"name":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIMPVT.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

We address the problem of object class segmentation of 3D point clouds. Each point of a cloud should be assigned a class label determined by the category of the object it belongs to. Non-associative Markov networks have been applied to this task recently. Indeed, they impose more flexible constraints on segmentation results in contrast to the associative ones. We show how to train non-associative Markov networks in a principled manner using the structured Support Vector Machine (SVM) formalism. In contrast to prior work we use the kernel trick which makes our method one of the first non-linear methods for max-margin Markov Random Field training applied to 3D point cloud segmentation. We evaluate our method on airborne and terrestrial laser scans. In comparison to the other non-linear training techniques our method shows higher accuracy.
三维点云分割的非关联马尔可夫网络切面训练
研究了三维点云的目标类分割问题。云的每个点都应该被分配一个由它所属的对象类别决定的类标签。非关联马尔可夫网络最近被应用于这个任务。事实上,与关联的结果相比,它们对分割结果施加了更灵活的约束。我们展示了如何使用结构化支持向量机(SVM)形式主义以原则性的方式训练非关联马尔可夫网络。与之前的工作相比,我们使用了核技巧,这使得我们的方法成为第一个用于3D点云分割的最大边界马尔可夫随机场训练的非线性方法之一。我们在机载和地面激光扫描上评估了我们的方法。与其他非线性训练技术相比,我们的方法具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信