Pruning near-duplicate images for mobile landmark identification: A graph theoretical approach

T. Danisman, J. Martinet, Ioan Marius Bilasco
{"title":"Pruning near-duplicate images for mobile landmark identification: A graph theoretical approach","authors":"T. Danisman, J. Martinet, Ioan Marius Bilasco","doi":"10.1109/CBMI.2015.7153635","DOIUrl":null,"url":null,"abstract":"Automatic landmark identification is one of the hot research topics in computer vision domain. Efficient and robust identification of landmark points is a challenging task, especially in a mobile context. This paper addresses the pruning of near-duplicate images for creating representative training image sets to minimize overall query processing complexity and time. We prune different perspectives of real world landmarks to find the smallest set of the most representative images. Inspired from graph theory, we represent each class in a separate graph using geometric verification of well-known RANSAC algorithm. Our iterative method uses maximum coverage information in each iteration to find the minimum representative set to reduce and prioritize the images of the initial dataset. Experiments on Paris dataset show that the proposed method provides robust and accurate results using smaller subsets.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic landmark identification is one of the hot research topics in computer vision domain. Efficient and robust identification of landmark points is a challenging task, especially in a mobile context. This paper addresses the pruning of near-duplicate images for creating representative training image sets to minimize overall query processing complexity and time. We prune different perspectives of real world landmarks to find the smallest set of the most representative images. Inspired from graph theory, we represent each class in a separate graph using geometric verification of well-known RANSAC algorithm. Our iterative method uses maximum coverage information in each iteration to find the minimum representative set to reduce and prioritize the images of the initial dataset. Experiments on Paris dataset show that the proposed method provides robust and accurate results using smaller subsets.
修剪近重复图像用于移动地标识别:一种图理论方法
自动地标识别是计算机视觉领域的研究热点之一。高效、稳健地识别地标点是一项具有挑战性的任务,特别是在移动环境中。本文解决了近重复图像的修剪,以创建具有代表性的训练图像集,以最小化总体查询处理的复杂性和时间。我们对现实世界地标的不同视角进行修剪,以找到最具代表性的图像的最小集合。受图论的启发,我们使用著名的RANSAC算法的几何验证在一个单独的图中表示每个类。我们的迭代方法在每次迭代中使用最大覆盖信息来找到最小代表集,以减少初始数据集的图像并对其进行优先级排序。在巴黎数据集上的实验表明,该方法在较小的子集范围内提供了鲁棒性和准确性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信