Ex-situ programming in a neuromorphic memristor based crossbar circuit

C. Yakopcic, T. Taha
{"title":"Ex-situ programming in a neuromorphic memristor based crossbar circuit","authors":"C. Yakopcic, T. Taha","doi":"10.1109/NAECON.2015.7443087","DOIUrl":null,"url":null,"abstract":"This paper discusses a feedback programming method for a high density crossbar. This programming technique is capable of operating without the use of any transistor or diode isolation at the memristor crosspoints. A series of reads is applied to the crossbar before each write that is able to determine the resistance of each memristor in the crossbar despite the many parallel resistance paths. This is essential because the variation observed in memristor crossbars makes programming very difficult when using just a single write pulse without error checking. The programming method is then used to program a neuromorphic crossbar. Results show successful ex-situ training of a high density crossbar with significant area savings when compared to a one transistor one memristor (1T1M) design. A comparison between different crossbar designs is performed relative to the A-to-D complexity required to program each circuit for a varying device resistance ratio and programming precision.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper discusses a feedback programming method for a high density crossbar. This programming technique is capable of operating without the use of any transistor or diode isolation at the memristor crosspoints. A series of reads is applied to the crossbar before each write that is able to determine the resistance of each memristor in the crossbar despite the many parallel resistance paths. This is essential because the variation observed in memristor crossbars makes programming very difficult when using just a single write pulse without error checking. The programming method is then used to program a neuromorphic crossbar. Results show successful ex-situ training of a high density crossbar with significant area savings when compared to a one transistor one memristor (1T1M) design. A comparison between different crossbar designs is performed relative to the A-to-D complexity required to program each circuit for a varying device resistance ratio and programming precision.
基于神经形态忆阻器的跨栅电路的非原位编程
讨论了一种高密度横杆的反馈规划方法。这种编程技术能够在不使用任何晶体管或二极管隔离的情况下在忆阻器交叉点运行。在每次写入之前,一系列的读被应用到交叉棒上,这能够确定交叉棒中每个忆阻器的电阻,尽管有许多平行的电阻路径。这是必要的,因为在记忆电阻器横条中观察到的变化使得仅使用单个写脉冲而不进行错误检查时编程非常困难。然后使用编程方法对神经形态横杆进行编程。结果表明,与一晶体管一忆阻器(1T1M)设计相比,高密度交叉棒的成功非原位训练具有显着的面积节省。根据不同器件电阻比和编程精度对每个电路进行编程所需的A-to- d复杂度,对不同的横杆设计进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信