{"title":"13.56 MHz Scalable Shielded-Capacitive Power Transfer for Electric Vehicle Wireless Charging","authors":"A. Muharam, Suziana Ahmad, R. Hattori, A. Hapid","doi":"10.1109/WoW47795.2020.9291299","DOIUrl":null,"url":null,"abstract":"This paper proposes a scalable shielded capacitive power transfer (shielded-CPT) for mini electric vehicle (EV) wireless charging application. The design and analytical studies of the proposed shielded-CPT are introduced by using LTSpice™ simulation software. In order to obtain an accurate calculation of the impedance matching network, the capacitances appeared in the system are observed with finite element analysis (FEA) tools using ElecNet™ software from Infolytica™. With a 3-cm shield-shield gap, 3.46 pF of coupling capacitance and 10.9 pF of shield coupling capacitance are acquired by FEA. A Spice simulation result shows as high as 97% efficiency provided by the proposed shielded-CPT. With misalignment conditions from 1 cm to 3 cm, the system could have managed the efficiency from 85% to 74% in the Y-misalignment direction, and drop to 48% when the coupler is in the X-misalignment direction.","PeriodicalId":192132,"journal":{"name":"2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoW47795.2020.9291299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper proposes a scalable shielded capacitive power transfer (shielded-CPT) for mini electric vehicle (EV) wireless charging application. The design and analytical studies of the proposed shielded-CPT are introduced by using LTSpice™ simulation software. In order to obtain an accurate calculation of the impedance matching network, the capacitances appeared in the system are observed with finite element analysis (FEA) tools using ElecNet™ software from Infolytica™. With a 3-cm shield-shield gap, 3.46 pF of coupling capacitance and 10.9 pF of shield coupling capacitance are acquired by FEA. A Spice simulation result shows as high as 97% efficiency provided by the proposed shielded-CPT. With misalignment conditions from 1 cm to 3 cm, the system could have managed the efficiency from 85% to 74% in the Y-misalignment direction, and drop to 48% when the coupler is in the X-misalignment direction.