{"title":"Unsupervised video object segmentation by supertrajectory labeling","authors":"Masahiro Masuda, Yoshihiko Mochizuki, H. Ishikawa","doi":"10.23919/MVA.2017.7986897","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to unsupervised video segmentation based on the trajectories of Temporal Super-pixels (TSPs). We cast the segmentation problem as a trajectory-labeling problem and define a Markov random field on a graph in which each node represents a trajectory of TSPs, which we minimize using a new two-stage optimization method we developed. The adaption of the trajectories as basic building blocks brings several advantages over conventional superpixel-based methods, such as more expressive potential functions, temporal coherence of the resulting segmentation, and drastically reduced number of the MRF nodes. The most important effect is, however, that it allows more robust segmentation of the foreground that is static in some frames. The method is evaluated on a subset of the standard SegTrack benchmark and yields competitive results against the state-of-the-art methods.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We propose a novel approach to unsupervised video segmentation based on the trajectories of Temporal Super-pixels (TSPs). We cast the segmentation problem as a trajectory-labeling problem and define a Markov random field on a graph in which each node represents a trajectory of TSPs, which we minimize using a new two-stage optimization method we developed. The adaption of the trajectories as basic building blocks brings several advantages over conventional superpixel-based methods, such as more expressive potential functions, temporal coherence of the resulting segmentation, and drastically reduced number of the MRF nodes. The most important effect is, however, that it allows more robust segmentation of the foreground that is static in some frames. The method is evaluated on a subset of the standard SegTrack benchmark and yields competitive results against the state-of-the-art methods.