Abel Ramalho Galvão, Jonathan M. C. Rehem, W. L. C. D. Santos, Luciano Rebouças de Oliveira, A. A. Duarte, M. F. Angelo
{"title":"Avaliação de Modelos de Detecção de Objetos para Detectar Glomérulos em Imagens Histológicas","authors":"Abel Ramalho Galvão, Jonathan M. C. Rehem, W. L. C. D. Santos, Luciano Rebouças de Oliveira, A. A. Duarte, M. F. Angelo","doi":"10.5753/sibgrapi.est.2021.20028","DOIUrl":null,"url":null,"abstract":"Os glomérulos são estrutruas renais responsáveis pela filtragem do sangue e podem ser acometidos por lesões. Atualmente, sistemas computacionais para auxiliar na identficação destas lesões têm sido desenvolvidos, e assim, é de grande importância a detecção destes glomérulos. O objetivo deste trabalho é avaliar o desempenho de modelos de detecção de objetos para a detecção de glomérulos em imagens histológicas digitais. Foram avaliados 3 modelos: SM1 (SSD Mobilenet v1), FRR50 (Faster RCNN Resnet 50) e FRR101 (Faster RCNN Resnet 101), dos quais, o modelo FRR50 obteve o melhor resultado, mAP=0.88.","PeriodicalId":110864,"journal":{"name":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da XXXIV Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2021.20028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Os glomérulos são estrutruas renais responsáveis pela filtragem do sangue e podem ser acometidos por lesões. Atualmente, sistemas computacionais para auxiliar na identficação destas lesões têm sido desenvolvidos, e assim, é de grande importância a detecção destes glomérulos. O objetivo deste trabalho é avaliar o desempenho de modelos de detecção de objetos para a detecção de glomérulos em imagens histológicas digitais. Foram avaliados 3 modelos: SM1 (SSD Mobilenet v1), FRR50 (Faster RCNN Resnet 50) e FRR101 (Faster RCNN Resnet 101), dos quais, o modelo FRR50 obteve o melhor resultado, mAP=0.88.