Salvador Serrano Salazar, José Carrasco Hortal, Francesc Josep Morales Menárguez
{"title":"Modelos de brotes arbustivos o algas en arquitectura. O cómo replicar un vegetal mediante la Agregación Limitada por Difusión (DLA)","authors":"Salvador Serrano Salazar, José Carrasco Hortal, Francesc Josep Morales Menárguez","doi":"10.14198/I2.2017.5.01","DOIUrl":null,"url":null,"abstract":"This article discusses the development of a design method for branched structures with seaweed-like or shrub-like forms based on diffusion-limited aggregation (DLA) to define its geometry. DLA has been used to reproduce convincing or credible growth rules from what has been learned from programmable displays such as NetLogo (Wilenski 1999). In particular, the tools that reproduce the simulation learned from NetLogo are the Grasshopper software to generate the geometry, the Exoskeleton plug-in to get surrounding surfaces to these wireframe structures, and the Weaverbird plug-in to smooth transitions between mesh faces. This last tool allows smoothing the mesh by iterations that increase or not the number of faces, which allows to understand some theories about smooth transitions in forks of natural structures (Mattheck 1990). This article also serves to reflect on how kinetic-physical models based on mechanics inspired by Artificial Intelligence help to share methods of analysis with other disciplines such as cybernetics or fluid dynamics or the social and environmental sciences. Why can this happen? Because of the rigor in language that all the time tries to refer to populations of individuals, to life cycles, to multi-variable systems, to reciprocity rules or to pacts with near particles.","PeriodicalId":298878,"journal":{"name":"[i2]: Investigación e Innovación en Arquitectura y Territorio","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[i2]: Investigación e Innovación en Arquitectura y Territorio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14198/I2.2017.5.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This article discusses the development of a design method for branched structures with seaweed-like or shrub-like forms based on diffusion-limited aggregation (DLA) to define its geometry. DLA has been used to reproduce convincing or credible growth rules from what has been learned from programmable displays such as NetLogo (Wilenski 1999). In particular, the tools that reproduce the simulation learned from NetLogo are the Grasshopper software to generate the geometry, the Exoskeleton plug-in to get surrounding surfaces to these wireframe structures, and the Weaverbird plug-in to smooth transitions between mesh faces. This last tool allows smoothing the mesh by iterations that increase or not the number of faces, which allows to understand some theories about smooth transitions in forks of natural structures (Mattheck 1990). This article also serves to reflect on how kinetic-physical models based on mechanics inspired by Artificial Intelligence help to share methods of analysis with other disciplines such as cybernetics or fluid dynamics or the social and environmental sciences. Why can this happen? Because of the rigor in language that all the time tries to refer to populations of individuals, to life cycles, to multi-variable systems, to reciprocity rules or to pacts with near particles.