Modelos de brotes arbustivos o algas en arquitectura. O cómo replicar un vegetal mediante la Agregación Limitada por Difusión (DLA)

Salvador Serrano Salazar, José Carrasco Hortal, Francesc Josep Morales Menárguez
{"title":"Modelos de brotes arbustivos o algas en arquitectura. O cómo replicar un vegetal mediante la Agregación Limitada por Difusión (DLA)","authors":"Salvador Serrano Salazar, José Carrasco Hortal, Francesc Josep Morales Menárguez","doi":"10.14198/I2.2017.5.01","DOIUrl":null,"url":null,"abstract":"This article discusses the development of a design method for branched structures with seaweed-like or shrub-like forms based on diffusion-limited aggregation (DLA) to define its geometry. DLA has been used to reproduce convincing or credible growth rules from what has been learned from programmable displays such as NetLogo (Wilenski 1999). In particular, the tools that reproduce the simulation learned from NetLogo are the Grasshopper software to generate the geometry, the Exoskeleton plug-in to get surrounding surfaces to these wireframe structures, and the Weaverbird plug-in to smooth transitions between mesh faces. This last tool allows smoothing the mesh by iterations that increase or not the number of faces, which allows to understand some theories about smooth transitions in forks of natural structures (Mattheck 1990). This article also serves to reflect on how kinetic-physical models based on mechanics inspired by Artificial Intelligence help to share methods of analysis with other disciplines such as cybernetics or fluid dynamics or the social and environmental sciences. Why can this happen? Because of the rigor in language that all the time tries to refer to populations of individuals, to life cycles, to multi-variable systems, to reciprocity rules or to pacts with near particles.","PeriodicalId":298878,"journal":{"name":"[i2]: Investigación e Innovación en Arquitectura y Territorio","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[i2]: Investigación e Innovación en Arquitectura y Territorio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14198/I2.2017.5.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article discusses the development of a design method for branched structures with seaweed-like or shrub-like forms based on diffusion-limited aggregation (DLA) to define its geometry. DLA has been used to reproduce convincing or credible growth rules from what has been learned from programmable displays such as NetLogo (Wilenski 1999). In particular, the tools that reproduce the simulation learned from NetLogo are the Grasshopper software to generate the geometry, the Exoskeleton plug-in to get surrounding surfaces to these wireframe structures, and the Weaverbird plug-in to smooth transitions between mesh faces. This last tool allows smoothing the mesh by iterations that increase or not the number of faces, which allows to understand some theories about smooth transitions in forks of natural structures (Mattheck 1990). This article also serves to reflect on how kinetic-physical models based on mechanics inspired by Artificial Intelligence help to share methods of analysis with other disciplines such as cybernetics or fluid dynamics or the social and environmental sciences. Why can this happen? Because of the rigor in language that all the time tries to refer to populations of individuals, to life cycles, to multi-variable systems, to reciprocity rules or to pacts with near particles.
建筑中的灌木芽或藻类模型。或者如何通过扩散限制聚集(DLA)复制植物
本文讨论了一种基于扩散限制聚集(DLA)来定义其几何形状的海藻状或灌木状分支结构设计方法的发展。DLA已被用于从NetLogo等可编程显示器中学到的东西中重现令人信服或可信的增长规则(Wilenski 1999)。特别是,再现从NetLogo中学习的模拟的工具是用于生成几何形状的Grasshopper软件,用于获得这些线框结构周围表面的Exoskeleton插件,以及用于在网格面之间平滑过渡的Weaverbird插件。最后一个工具允许通过增加或不增加面数的迭代来平滑网格,这可以理解一些关于自然结构分叉中平滑过渡的理论(Mattheck 1990)。本文还反映了基于受人工智能启发的力学的动力学-物理模型如何有助于与控制论、流体动力学或社会与环境科学等其他学科分享分析方法。为什么会发生这种情况?因为语言的严谨性总是试图指代个体群体,生命周期,多变量系统,互易规则或近粒子的契约。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信